cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084706 Duplicate of A051900.

Original entry on oeis.org

3, 5, 13, 17, 113, 97, 193, 257, 769, 11777, 13313, 59393, 12289, 40961, 114689, 65537, 2424833, 6946817, 786433, 5767169, 7340033, 23068673, 155189249, 595591169, 1224736769, 167772161, 469762049, 2281701377, 3489660929, 12348030977, 3221225473
Offset: 0

Views

Author

Amarnath Murthy, Jun 09 2003

Keywords

A074781 Primes of the form p*2^k + 1 for any k and any prime p.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 23, 29, 41, 47, 53, 59, 83, 89, 97, 107, 113, 137, 149, 167, 173, 179, 193, 227, 233, 257, 263, 269, 293, 317, 347, 353, 359, 383, 389, 449, 467, 479, 503, 509, 557, 563, 569, 587, 593, 641, 653, 719, 769, 773, 797, 809, 839, 857, 863, 887
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Sep 07 2002

Keywords

Comments

From Bernard Schott, Dec 14 2020: (Start)
Equivalently, primes p such that the ratio (p-1)/gpf(p-1) = 2^k where gpf(m) is the greatest prime factor of m, A006530.
Paul Erdős asked if there are infinitely many primes p in this sequence (see R. K. Guy reference). (End)

Examples

			3 = 2*2^0+1 is a term and 2/2 = 1 = 2^0.
7 = 3*2^1+1 is a term and 6/3 = 2 = 2^1.
13 = 3*2^2+1 is a term and 12/3 = 4 = 2^2.
41 = 5*2^3+1 is a term and 40/5 = 8 = 2^3.
113 = 7*2^4+1 is a term and 112/7 = 16 = 2^4.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.

Crossrefs

Cf. other ratios : A339463, A339465, A339466.
Subsequences: A039687, A051900, A058500 (this sequence without the Fermat primes), A090866, A147545,

Programs

  • Maple
    alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
    is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2}:
    3, op(select(is_a, [$3..919])); # Peter Luschny, Dec 14 2020
  • Mathematica
    Select[Range[3, 1000], PrimeQ[#] && !CompositeQ[(# - 1)/2^IntegerExponent[(# - 1), 2]] &] (* Amiram Eldar, Dec 28 2018 *)

A051886 a(n) is the minimal prime p such that 2^n * p + 1 is prime.

Original entry on oeis.org

2, 2, 3, 2, 7, 3, 3, 2, 3, 23, 13, 29, 3, 5, 7, 2, 37, 53, 3, 11, 7, 11, 37, 71, 73, 5, 7, 17, 13, 23, 3, 239, 43, 113, 163, 59, 3, 89, 349, 5, 97, 3, 73, 11, 67, 101, 19, 101, 61, 23, 7, 17, 7, 233, 127, 5, 541, 29, 103, 71, 31, 53, 109, 179, 163, 71, 3, 929, 31, 23, 193, 101
Offset: 0

Views

Author

Labos Elemer, Dec 15 1999

Keywords

Comments

The minimal 2^n - Germain primes in order of increasing exponent n.

Examples

			The 10th term is 13, the first term in 1024-Germain prime sequence: {13,19,37,79,223,...}. The largest prime was found for 2^79: both 1427 and 604462909807314587353088*1427 + 1 = 862568572295037916152856577 are primes.
		

Crossrefs

Programs

  • Mathematica
    Table[p = 2; While[! PrimeQ[2^n*p + 1], p = NextPrime@ p]; p, {n, 0, 71}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    P=10^6;
    default(primelimit,P);
    a(n)={my(N=2^n);forprime(p=2,P,if(isprime(N*p+1),return(p)));}
    vector(66,n,a(n))
    /* Joerg Arndt, Jun 18 2012 */

Formula

a(n) = (A051900(n)-1)/2^n. - Amiram Eldar, Feb 28 2025

Extensions

Better name by Joerg Arndt, Jun 18 2012

A285787 Least number k such that the absolute value of the difference between the number of prime factors, with multiplicity, of k and k-1 is equal to n.

Original entry on oeis.org

3, 2, 8, 17, 32, 97, 128, 257, 769, 2048, 4097, 6144, 8192, 40961, 73728, 65537, 131072, 524289, 524288, 3145728, 6291456, 8388608, 18874368, 50331648, 113246209, 167772161, 268435457, 805306368, 1610612737, 2147483649, 2147483648, 17179869184, 21474836480
Offset: 0

Views

Author

Paolo P. Lava, Apr 26 2017

Keywords

Comments

a(n) <= A051900(n), with equality for n=3,5,7,8,13,15. - Robert Israel, Apr 26 2017

Examples

			a(9) = 2048 because 2047 = 23 * 89, 2048 = 2^11 and 11 - 2 = 9.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,v; v:=array(0..100);
    for k from 0 to 100 do v[k]:=0; od; a:=0;
    for k from 2 to q do b:=bigomega(k); if v[abs(b-a)]=0 then v[abs(b-a)]:=k; fi; a:=b; od; k:=0;
    while v[k]>0 do print(v[k]); k:=k+1; od; print(); end: P(10^6);
  • Mathematica
    s = PrimeOmega@ Range[10^6]; 1 + First /@ Values@ KeySort@ PositionIndex@ Flatten@ Map[Abs@ Differences@ # &, Partition[s, 2, 1]] (* Michael De Vlieger, Apr 26 2017, Version 10 *)

Formula

Least solutions of the equation abs(A001222(k) - A001222(k-1)) = n.

Extensions

a(24)-a(32) from Giovanni Resta, Apr 26 2017
Showing 1-4 of 4 results.