A051952 Numbers that are not a sum of 3 positive squares nor are of the form 4^a*(8b+7) and which are not multiples of 4.
1, 2, 5, 10, 13, 25, 37, 58, 85, 130
Offset: 1
Examples
Consider a(3)=5: 1^2 +1^2 +1^2=3, too low; 1^2+1^2+2^2=6, too high. 4^1=4 too low; 4^2=16 too high; (8*0+7)=7 too low, (8*1+7)= 15 too high; thus 5 is a member of this sequence.
References
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 79 with p. 76.
Links
- H. P. Baltes and E. R. Hilf, Spectra of finite systems; BI-Verlag.
- H.-P. Baltes, Peter K. J. Draxl and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik, Publications of the Small Systems Group Oldenburg, preprint, 1973.
- H.-P. Baltes, Peter K. J. Draxl and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik, Journ. Reine Angewandte Mathematik, Vol. 268/269, 1974, 410-417.
- P. K. J. Draxl, Sommes de deux carrés qui ne sont pas sommes de trois carrés strictement positifs, Mémoires de la Société Mathématique de France, 37 (1974), p. 53-53.
- E. Grosswald, A. Calloway and J. Calloway, The representations of integers by three positive squares, Proc. Amer. Math. Soc. 10 (1959), 451-455. [Math. Rev. 21 #3376; E24-73 in Leveque's Reviews in Number Theory, Vol. 2, p. 290]
- F. Halter-Koch, Darstellung natürlicher Zahlen als Summe von Quadraten, Acta Arith. 42 (1982) 11-20, p. 13.
- Eberhard R. Hilf, Publications
- Eberhard R. Hilf, Über den Oberflächenterm der Gesamtenergie der Atomkerne nach dem Fermigas-Modell, Diploma-thesis, Universität Frankfurt, Germany, 1963.
- E. R. Hilf and H. P. Baltes, 130 and the cube spectrum, unpublished
- E. R. Hilf, G. Suessmann, Surface Tension of nuclei according to the Fermi-gas-model, Physics Letters, Vol. 21, No. 6, p. 654-656, (1966).
- Index entries for sequences related to sums of squares
Programs
-
Mathematica
nmax = 1000; amax = Ceiling[Log[nmax/7]/Log[4]]; notThreeSquaresQ[n_] := Reduce[0 < a <= b <= c && n == a^2 + b^2 + c^2, {a, b, c}, Integers] === False; notOfTheFormQ[n_, a_] := Reduce[n == 4^a*(8*b+7), b, Integers] === False; notOfTheFormQ[n_] := And @@ (notOfTheFormQ[n, #] & ) /@ Range[0, amax]; Select[Range[nmax], !Mod[#, 4] == 0 && notThreeSquaresQ[#] && notOfTheFormQ[#] & ](* Jean-François Alcover, Jun 12 2012 *)
Extensions
Grosswald et al. reference from N. J. A. Sloane, Jun 07 2000
Comments