cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051952 Numbers that are not a sum of 3 positive squares nor are of the form 4^a*(8b+7) and which are not multiples of 4.

Original entry on oeis.org

1, 2, 5, 10, 13, 25, 37, 58, 85, 130
Offset: 1

Views

Author

Eberhard R. Hilf, Dec 21 1999

Keywords

Comments

The asymptotic eigenvalue spectrum of the Schroedinger equation for a free particle in a box in three dimensions is known only (that is: average level density and average degeneracy) if the a(n) are finite series.
It is not known whether 130 is the largest such number or if this is the start of an infinite series.
See Theorem 6 of Grosswald's book, p. 79: every positive integer n not of the form 4^a*(8*m+7), with a and m nonnegative integers [i.e., n is a sum of three squares, proved by Legendre (1798)] and not of the form 4^b*a(n), with b a nonnegative integer, n=1,...,10, and possibly one a(11) > 5*10^10, is a sum of three non-vanishing squares. See A004214 and A000408. In the F. Halter-Koch reference, p. 13, one finds a Korollar 1 (b) stating for positive integers n, not 0, 4, 7 modulo 8: n is not the sum of three positive coprime squares if and only if n = a(n), n=1,...,10, and possibly one more number a(11) >= 5*10^10. See A223731. - Wolfdieter Lang, Apr 04 2013

Examples

			Consider a(3)=5: 1^2 +1^2 +1^2=3, too low; 1^2+1^2+2^2=6, too high. 4^1=4 too low; 4^2=16 too high; (8*0+7)=7 too low, (8*1+7)= 15 too high; thus 5 is a member of this sequence.
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 79 with p. 76.

Programs

  • Mathematica
    nmax = 1000; amax = Ceiling[Log[nmax/7]/Log[4]]; notThreeSquaresQ[n_] := Reduce[0 < a <= b <= c && n == a^2 + b^2 + c^2, {a, b, c}, Integers] === False; notOfTheFormQ[n_, a_] := Reduce[n == 4^a*(8*b+7), b, Integers] === False; notOfTheFormQ[n_] := And @@ (notOfTheFormQ[n, #] & ) /@ Range[0, amax]; Select[Range[nmax], !Mod[#, 4] == 0 && notThreeSquaresQ[#] && notOfTheFormQ[#] & ](* Jean-François Alcover, Jun 12 2012 *)

Extensions

Grosswald et al. reference from N. J. A. Sloane, Jun 07 2000