A051955 a(n) = smallest palindrome > a(n-1) such that a(1)*a(2)*...*a(n) + 1 and a(1)*a(2)*...*a(n) - 1 are primes.
4, 363, 434, 484, 494, 636, 4004, 46864, 47474, 135531, 695596, 1793971, 1826281, 1933391, 4700074, 4785874, 4806084, 6462646, 6574756, 9558559, 15399351, 46288264, 53500535, 57499475, 150787051, 185808581, 197636791, 226686622
Offset: 1
Programs
-
Mathematica
a[1] = 4; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, id = IntegerDigits[k]; If[id == Reverse[id], p = Product[a[j], {j, 1, n - 1}]*k + 1; If[PrimeQ[p] && PrimeQ[p-2], Return[k]]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 30 2017 *)
Extensions
a(12)-a(28) from Donovan Johnson, Feb 17 2010