cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A052065 a(n) is the first square root greater than 10^n such that a(n)^2 is a palfree square (palfree = contains no palindromic substring except single digits).

Original entry on oeis.org

13, 104, 1014, 10123, 101047, 1010456, 10104574, 101045587, 1010455851, 10104558492, 101045584913, 1010455848322, 10104558481373, 101045584813152, 1010455848130452, 10104558481304484
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Probably finite.

Crossrefs

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), May 23 2007

A256351 Composites in base 10 that remain composite in exactly seven bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

8, 9, 15, 16, 21, 22, 25, 28, 34, 75, 87, 91, 93, 94, 106, 111, 123, 141, 143, 145, 147, 155, 172, 201, 205, 214, 217, 237, 255, 298, 304, 305, 363, 371, 376, 377, 385, 388, 395, 403, 411, 423, 428, 442, 458, 466, 471, 473, 483, 495, 501, 505, 507, 531, 533
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(b,x) local L,i;
    L:= convert(x,base,b);
    isprime(add(10^(i-1)*L[i],i=1..nops(L)))
    end proc:
    select(t -> not isprime(t) and nops(select(f,[$2..9],t))=2, [$1..1000]); # Robert Israel, Mar 26 2015
  • Mathematica
    fQ[n_] := CompositeQ@ n && Count[ CompositeQ[ FromDigits[ IntegerDigits[n, #]] & /@ Range[2, 9]], True] == 6; Select[ Range@ 500, fQ] (* Robert G. Wilson v, Mar 26 2015 *)

A052066 Palfree squares whose root is the smallest possible greater than 10^n (palfree = contains no palindromic substring except single digits).

Original entry on oeis.org

169, 10816, 1028196, 102475129, 10210496209, 1021021327936, 102102415721476, 10210210652174569, 1021021026820134201, 102102102318249314064, 10210210230410293217569
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Probably finite.

Crossrefs

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), May 23 2007

A052067 a(n) is the first cube root greater than 10^n such that a(n)^3 is a palfree cube (palfree = contains no palindromic substring except single digits).

Original entry on oeis.org

12, 102, 1008, 10091, 100698, 1007059, 10069605, 100695969, 1006958659, 10069585741, 100695847434, 1006958474563, 10069584743393, 100695847434688, 1006958474332019, 10069584743315203
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Probably finite.

Crossrefs

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), May 23 2007

A052068 Palfree cubes whose root is the smallest possible greater than 10^n (palfree = contains no palindromic substring except single digits).

Original entry on oeis.org

1728, 1061208, 1024192512, 1027549183571, 1021086501268392, 1021326840189306379, 1021027182906953620125, 1021024718963175618538209, 1021021582763927831895785179
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Probably finite.

Crossrefs

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), May 23 2007

A256355 Composites in base 10 that remain composite in exactly three bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

11233, 42241, 98281, 131239, 161953, 315151, 358135, 606553, 692263, 785851, 1114081, 1130419, 1525777, 1906363, 3369313, 3403081, 3880873, 5616721, 6036103, 6947611, 7253191, 7516783, 7886593, 8799127, 8811223, 9108289, 9113203, 9195313, 9450361, 9600769
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Examples

			11233 = 324413_5 and 324413_10 is composite; 11233 = 44515_7 and 44515_10 is composite; 11233_10 itself is composite. Interpreted in base 2, 3, 4, 6, 8, and 9 the result is prime. Hence 11233 is in this sequence.
		

Crossrefs

Programs

Showing 1-6 of 6 results.