A052063 Numbers k such that the decimal expansion of k^3 contains no palindromic substring except single digits.
0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 32, 33, 35, 37, 38, 39, 41, 43, 44, 47, 51, 57, 59, 65, 66, 69, 73, 75, 76, 84, 88, 93, 94, 97, 102, 108, 109, 115, 116, 123, 125, 128, 133, 134, 135, 139, 144, 145, 147, 148, 155, 156, 159
Offset: 1
Examples
19^3 = 6859 -> substrings 68, 85, 59, 685, 859 and 6859 are all non-palindromic.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
testQ@l_ := NoneTrue[Flatten[Table[Partition[l, n, 1], {n, 2, Length@l}], 1], PalindromeQ]; f@nn_ := Select[Range@nn, testQ@IntegerDigits@(#^3) &]; f[300] (* Hans Rudolf Widmer, May 13 2022 *)
-
Python
def nopal(s): return all(ss != ss[::-1] for ss in (s[i:j] for i in range(len(s)-1) for j in range(i+2, len(s)+1))) def ok(n): return nopal(str(n**3)) print([k for k in range(160) if ok(k)]) # Michael S. Branicky, May 13 2022
Comments