A052132 Numerators of coefficients in function a(x) such that a(a(a(x))) = sin x.
1, -1, -7, -643, -13583, -29957, -24277937, -6382646731, 2027394133729, 10948179003324221, 177623182156029053, 126604967848904128751, -2640658729595838040517543, -423778395125199663867841
Offset: 0
References
- W. C. Yang, Composition equations, preprint, 1999.
Programs
-
Mathematica
n = 14; m = 2 n - 1 (* m = maximal degree *); a[x_] = Sum[c[k] x^k, {k, 1, m, 2}] ; coes = DeleteCases[ CoefficientList[Series[a @ a @ a @ x - Sin[x], {x, 0, m}], x] // Rest , 0]; Do[s[k] = Solve[coes[[1]] == 0] // First; coes = coes /. s[k] // Rest, {k, 1, n}] (CoefficientList[a[x] /. Flatten @ Array[s, n], x] // Numerator // Partition[#, 2] &)[[All, 2]] (* Jean-François Alcover, May 04 2011 *)
-
Maxima
T(n,m):=if n=m then 1 else 1/3*((((-1)^(n-m)+1)*sum((2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i),i,0,m/2))/(2^m*n!)-sum(T(k,m)*sum(T(n,i)*T(i,k),i,k,n),k,m+1,n-1)-T(m,m)*sum(T(n,i)*T(i,m),i,m+1,n-1)); makelist(num(T(2*n-1,1)),n,1,7); /* Vladimir Kruchinin, Mar 10 2012 */
Formula
a(n) = numerator(T(2*n-1,1)), T(n,m) = 1/3*((((-1)^(n-m)+1)*sum(i=0..m/2, (2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i)))/(2^m*n!)-sum(k=m+1..n-1, T(k,m)*sum(i=k..n, T(n,i)*T(i,k)))-T(m,m)*sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 10 2012