cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052154 Array read by antidiagonals: a(n,k)= coefficient of z^n of p_k(z), where p_k+1(z)=(p_k(z))^2+z, p_1(z)=z.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 1, 0, 0, 1, 1, 2, 5, 0, 0, 0, 1, 1, 2, 5, 6, 0, 0, 0, 1, 1, 2, 5, 14, 6, 0, 0, 0, 1, 1, 2, 5, 14, 26, 4, 0, 0, 0, 1, 1, 2, 5, 14, 42, 44, 1, 0, 0, 0, 1, 1, 2, 5, 14, 42, 100, 69, 0, 0, 0, 0
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 24 2000

Keywords

Comments

a(n,k+1)=a(n,k), n<=k; a(n,n)=A000108. Note that the set {z: limit(p_k(z),k->infinity) not=infinity} of complex numbers defines the Mandelbrot set.

Examples

			p_1(z)=z: coefficient = 1 = a(1,1); p_2(z)=z^2+z: coefficients = 1, 1 = a(1,2), a(2,2); p_3(z)=(z^2+z)^2+z=z+z^2+2z^3+z^4: coefficients = 1,1,2,1 = (1,3), a(2,3), a(3,3), a(4,3); ...
Triangle starts:
1,
1, 0,
1, 1, 0,
1, 1, 0, 0,
1, 1, 2, 0, 0,
1, 1, 2, 1, 0, 0,
1, 1, 2, 5, 0, 0, 0,
1, 1, 2, 5, 6, 0, 0, 0,
1, 1, 2, 5, 14, 6, 0, 0, 0,
1, 1, 2, 5, 14, 26, 4, 0, 0, 0,
1, 1, 2, 5, 14, 42, 44, 1, 0, 0, 0,
1, 1, 2, 5, 14, 42, 100, 69, 0, 0, 0, 0,
...
		

Crossrefs

Cf. A000108.
Cf. A137560, which gives the same array read by rows. [From Robert Munafo, Dec 12 2009]

Programs

  • Mathematica
    p[1, z_] := z; p[k_, z_] := p[k, z] = p[k-1, z]^2 + z; a[n_, k_] := Coefficient[p[k, z], z, n]; Flatten[ Table[a[n-k, k], {n, 1, 13}, {k, n-1, 1, -1}]] (* Jean-François Alcover, Jun 13 2012 *)

Formula

a(n, k+1)=sum(a(i, k)*a(n-i, k), i=1..n-1) for n=2..2^k, a(1, k)=1, a(n, k+1)=0 for n>2^k.