cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052177 Number of walks on simple cubic lattice (starting on the xy plane, never going below it and finishing a height 1 above it).

Original entry on oeis.org

0, 1, 8, 50, 288, 1605, 8824, 48286, 264128, 1447338, 7953040, 43842788, 242507456, 1345868589, 7493458392, 41850173670, 234408444288, 1316541032958, 7413214297968, 41842633282620, 236703844320960
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2000

Keywords

Programs

  • Mathematica
    Flatten[{0,RecurrenceTable[{(n-1)*(n+3)*a[n] == 4*n*(2*n+1)*a[n-1] - 12*(n-1)*n*a[n-2],a[1]==1,a[2]==8},a,{n,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)

Formula

a(n) = 4*a(n-1)+A005572(n-1)+A052178(n-1) = A052179(n, 1) = Sum_{j=0..ceiling((n-1)/2)} 4^(n-2j-1)*binomial(n, 2j+1)*binomial(2j+2, j+1)/(j+2).
Recurrence: (n-1)*(n+3)*a(n) = 4*n*(2*n+1)*a(n-1) - 12*(n-1)*n*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 6^(n+3/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: (1 - 4*x - sqrt(1-8*x+12*x^2))^2/(4*x^3). - Mark van Hoeij, May 16 2013

Extensions

More terms and formula from Henry Bottomley, Aug 23 2001