A052179 Triangle of numbers arising in enumeration of walks on cubic lattice.
1, 4, 1, 17, 8, 1, 76, 50, 12, 1, 354, 288, 99, 16, 1, 1704, 1605, 700, 164, 20, 1, 8421, 8824, 4569, 1376, 245, 24, 1, 42508, 48286, 28476, 10318, 2380, 342, 28, 1, 218318, 264128, 172508, 72128, 20180, 3776, 455, 32, 1, 1137400, 1447338
Offset: 0
Examples
Triangle begins: 1; 4, 1; 17, 8, 1; 76, 50, 12, 1; 354, 288, 99, 16, 1; ... Production matrix begins: 4, 1; 1, 4, 1; 0, 1, 4, 1; 0, 0, 1, 4, 1; 0, 0, 0, 1, 4, 1; 0, 0, 0, 0, 1, 4, 1; 0, 0, 0, 0, 0, 1, 4, 1; - _Philippe Deléham_, Nov 04 2011
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Rigoberto Flórez, Leandro Junes, José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6.
Programs
-
Maple
T:= proc(n, k) option remember; `if`(min(n, k)<0, 0, `if`(max(n, k)=0, 1, T(n-1, k-1)+4*T(n-1, k)+T(n-1, k+1))) end: seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, Oct 28 2021
-
Mathematica
t[0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, 0] := t[n, 0] = 4*t[n-1, 0] + t[n-1, 1]; t[n_, k_] := t[n, k] = t[n-1, k-1] + 4*t[n-1, k] + t[n-1, k+1]; Flatten[ Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Oct 10 2011, after Philippe Deleham *)
Formula
Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0) = A005572(m+n). - Philippe Deléham, Sep 15 2005
n-th row = M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super and subdiagonals and (4,4,4,...) in the main diagonal. E.g., Row 3 = (76, 50, 12, 1) since M^3 * V = [76, 50, 12, 1, 0, 0, 0, ...]. - Gary W. Adamson, Nov 04 2006
Sum_{k=0..n} T(n,k) = A005573(n). - Philippe Deléham, Feb 04 2007
Sum_{k=0..n} T(n,k)*(k+1) = 6^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A033543(n), A064613(n), A005572(n), A005573(n) for x = -2, -1, 0, 1 respectively. - Philippe Deléham, Nov 28 2009
As an infinite lower triangular matrix = the binomial transform of A091965 and 4th binomial transform of A053121. - Gary W. Adamson, Aug 03 2011
G.f.: 2/(1 - 4*x - 2*x*y + sqrt(1 - 8*x + 12*x^2)). - Daniel Checa, Aug 17 2022
G.f. for the m-th column: x^m*(A(x))^(m+1), where A(x) is the g.f. of the sequence counting the walks on the cubic lattice starting and finishing on the xy plane and never going below it (A005572). Explicitly, the g.f. is x^m*((1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2))^(m+1). - Daniel Checa, Aug 28 2022
Comments