A052274 Number of distinct 5th powers mod n.
1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 3, 9, 13, 14, 15, 9, 17, 14, 19, 15, 21, 6, 23, 15, 5, 26, 19, 21, 29, 30, 7, 17, 9, 34, 35, 21, 37, 38, 39, 25, 9, 42, 43, 9, 35, 46, 47, 27, 43, 10, 51, 39, 53, 38, 15, 35, 57, 58, 59, 45, 13, 14, 49, 34, 65, 18, 67, 51, 69, 70
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- S. Li, On the number of elements with maximal order in the multiplicative group modulo n, Acta Arithm. 86 (2) (1998) 113, see proof of theorem 2.1
Crossrefs
Programs
-
Maple
A052274 := proc(m) {seq( modp(b^5,m),b=0..m-1) }; nops(%) ; end proc: seq(A052274(m),m=1..100) ; # R. J. Mathar, Sep 22 2017
-
Mathematica
With[{nn=100},Table[Length[Union[PowerMod[Range[nn],5,n]]],{n,nn}]] (* Harvey P. Dale, Mar 19 2016 *)
-
PARI
a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^5%k), , 8)) \\ Charles R Greathouse IV, Sep 05 2013
Formula
Conjecture: a(5^e) = 1+floor[(5-1)*5^(e+3)/(5^5-1)] if e == {0,2,3,4} (mod 5). a(5^e) = 5+floor[(5-1)*5^(e+3)/(5^5-1)] if e==1 (mod 5). - R. J. Mathar, Oct 22 2017
Conjecture: a(p^e) = 1+floor[(p-1)*p^(e+4)/{gcd(p-1,5)*(p^5-1)}] for primes p<>5 - R. J. Mathar, Oct 22 2017
Comments