cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052300 Number of rooted Greg trees.

Original entry on oeis.org

1, 2, 6, 21, 78, 313, 1306, 5653, 25088, 113685, 523522, 2443590, 11533010, 54949539, 263933658, 1276652682, 6213207330, 30402727854, 149486487326, 738184395770, 3659440942282, 18205043615467, 90856842218506, 454770531433586, 2282393627458496, 11483114908752959
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A rooted Greg tree can be described as a rooted tree with 2-colored nodes where only the black nodes are counted and the white nodes have at least 2 children.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]];
    a[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a /@ Range[1, 40] (* Jean-François Alcover, Oct 02 2019, after Alois P. Heinz *)

Formula

Satisfies a = EULER(a) + SHIFT_RIGHT(EULER(a)) - a.
a(n) ~ c * d^n / n^(3/2), where d = 5.33997181362574740496306748840603859910694551382103293340704... and c = 0.18146848896221859476228524468003196434835879494225205... - Vaclav Kotesovec, Jun 11 2021