A052300 Number of rooted Greg trees.
1, 2, 6, 21, 78, 313, 1306, 5653, 25088, 113685, 523522, 2443590, 11533010, 54949539, 263933658, 1276652682, 6213207330, 30402727854, 149486487326, 738184395770, 3659440942282, 18205043615467, 90856842218506, 454770531433586, 2282393627458496, 11483114908752959
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to rooted trees
- N. J. A. Sloane, Transforms
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)): seq(a(n), n=1..40); # Alois P. Heinz, Jun 22 2018
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]]; a /@ Range[1, 40] (* Jean-François Alcover, Oct 02 2019, after Alois P. Heinz *)
Formula
Satisfies a = EULER(a) + SHIFT_RIGHT(EULER(a)) - a.
a(n) ~ c * d^n / n^(3/2), where d = 5.33997181362574740496306748840603859910694551382103293340704... and c = 0.18146848896221859476228524468003196434835879494225205... - Vaclav Kotesovec, Jun 11 2021
Comments