A052302 Number of Greg trees with n black nodes.
1, 1, 1, 2, 5, 12, 37, 116, 412, 1526, 5995, 24284, 101619, 434402, 1893983, 8385952, 37637803, 170871486, 783611214, 3625508762, 16906577279, 79395295122, 375217952457, 1783447124452, 8521191260092, 40907997006020, 197248252895597, 954915026282162
Offset: 0
Keywords
Links
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i))) end: g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)): a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)): seq(a(n), n=0..40); # Alois P. Heinz, Jun 22 2018
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]]; a[n_] := If[n == 0, 1, g[n] - Sum[g[j]*g[n - j], {j, 0, n}]]; a /@ Range[0, 40] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)
Formula
G.f.: 1 + B(x) - B(x)^2 where B(x) is g.f. of A052300.
Comments