cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052302 Number of Greg trees with n black nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 37, 116, 412, 1526, 5995, 24284, 101619, 434402, 1893983, 8385952, 37637803, 170871486, 783611214, 3625508762, 16906577279, 79395295122, 375217952457, 1783447124452, 8521191260092, 40907997006020, 197248252895597, 954915026282162
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)):
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
        Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j]*g[n - j], {j, 0, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) - B(x)^2 where B(x) is g.f. of A052300.