cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052303 Number of asymmetric Greg trees.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 4, 12, 42, 137, 452, 1491, 4994, 16831, 57408, 197400, 685008, 2395310, 8437830, 29917709, 106724174, 382807427, 1380058180, 4998370015, 18181067670, 66393725289, 243347195594, 894959868983, 3301849331598, 12217869541117, 45335177297876
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

A Greg tree can be described as a tree with 2-colored nodes where only the black nodes are counted and the white nodes are of degree at least 3.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)) :
    a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
    g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]];
    a[n_] := If[n == 0, 1, g[n] - Sum[g[j] g[n - j], {j, 0, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)

Formula

G.f.: 1+B(x)-B(x)^2 where B(x) is g.f. of A052301.