A052303 Number of asymmetric Greg trees.
1, 1, 0, 0, 0, 0, 1, 4, 12, 42, 137, 452, 1491, 4994, 16831, 57408, 197400, 685008, 2395310, 8437830, 29917709, 106724174, 382807427, 1380058180, 4998370015, 18181067670, 66393725289, 243347195594, 894959868983, 3301849331598, 12217869541117, 45335177297876
Offset: 0
Keywords
Links
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i))) end: g:= n-> `if`(n<1, 0, b(n-1$2)+b(n, n-1)) : a:= n-> `if`(n=0, 1, g(n)-add(g(j)*g(n-j), j=0..n)): seq(a(n), n=0..40); # Alois P. Heinz, Jun 22 2018
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; g[n_] := If[n < 1, 0, b[n - 1, n - 1] + b[n, n - 1]]; a[n_] := If[n == 0, 1, g[n] - Sum[g[j] g[n - j], {j, 0, n}]]; a /@ Range[0, 40] (* Jean-François Alcover, Apr 28 2020, after Alois P. Heinz *)
Formula
G.f.: 1+B(x)-B(x)^2 where B(x) is g.f. of A052301.
Comments