A052307 Triangle read by rows: T(n,k) = number of bracelets (reversible necklaces) with n beads, k of which are black and n - k are white.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 4, 5, 8, 5, 4, 1, 1, 1, 1, 4, 7, 10, 10, 7, 4, 1, 1, 1, 1, 5, 8, 16, 16, 16, 8, 5, 1, 1, 1, 1, 5, 10, 20, 26, 26, 20, 10, 5, 1, 1, 1, 1, 6, 12, 29, 38, 50, 38, 29, 12, 6, 1, 1, 1, 1, 6, 14, 35, 57, 76, 76, 57, 35, 14, 6, 1, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 1, 2, 1, 1; 1, 1, 2, 2, 1, 1; 1, 1, 3, 3, 3, 1, 1; 1, 1, 3, 4, 4, 3, 1, 1; 1, 1, 4, 5, 8, 5, 4, 1, 1; 1, 1, 4, 7, 10, 10, 7, 4, 1, 1; 1, 1, 5, 8, 16, 16, 16, 8, 5, 1, 1; 1, 1, 5, 10, 20, 26, 26, 20, 10, 5, 1, 1; 1, 1, 6, 12, 29, 38, 50, 38, 29, 12, 6, 1, 1; ...
References
- Martin Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pages 245-246.
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Washington Bomfim, Rows n = 0..130, flattened
- N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- G. Gori, S. Paganelli, A. Sharma, P. Sodano, and A. Trombettoni, Bell-Paired States Inducing Volume Law for Entanglement Entropy in Fermionic Lattices, arXiv:1405.3616 [cond-mat.stat-mech], 2014. See Section V.
- H. Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10(8) (1979), 964-999.
- S. Karim, J. Sawada, Z. Alamgirz, and S. M. Husnine, Generating bracelets with fixed content, Theoretical Computer Science, 475 (2013), 103-112.
- John P. McSorley and Alan H. Schoen, Rhombic tilings of (n, k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154. - From _N. J. A. Sloane_, Nov 26 2012
- A. L. Patterson, Ambiguities in the X-Ray Analysis of Crystal Structures, Phys. Rev. 65 (1944), 195 - 201 (see Table I). [From _N. J. A. Sloane_, Mar 14 2009]
- Richard H. Reis, A formula for C(T) in Gupta's paper, Indian J. Pure and Appl. Math., 10(8) (1979), 1000-1001.
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35(5) (2004), 629-638.
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35(5) (2004), 629-638.
- Index entries for sequences related to bracelets
Crossrefs
Programs
-
Maple
A052307 := proc(n,k) local hk,a,d; if k = 0 then return 1 ; end if; hk := k mod 2 ; a := 0 ; for d in numtheory[divisors](igcd(k,n)) do a := a+ numtheory[phi](d)*binomial(n/d-1,k/d-1) ; end do: %/k + binomial(floor((n-hk)/2),floor(k/2)) ; %/2 ; end proc: # R. J. Mathar, Sep 04 2011
-
Mathematica
Table[If[m*n===0,1,1/2*If[EvenQ[n], If[EvenQ[m], Binomial[n/2, m/2], Binomial[(n-2)/2, (m-1)/2 ]], If[EvenQ[m], Binomial[(n-1)/2, m/2], Binomial[(n-1)/2, (m-1)/2]]] + 1/2*Fold[ #1 +(EulerPhi[ #2]*Binomial[n/#2, m/#2])/n &, 0, Intersection[Divisors[n], Divisors[m]]]], {n,0,12}, {m,0,n}] (* Wouter Meeussen, Aug 05 2002, Jan 19 2009 *)
-
PARI
B(n,k)={ if(n==0, return(1)); GCD = gcd(n, k); S = 0; for(d = 1, GCD, if((k%d==0)&&(n%d==0), S+=eulerphi(d)*binomial(n/d,k/d))); return (binomial(floor(n/2)- k%2*(1-n%2), floor(k/2))/2 + S/(2*n)); } n=0;k=0; for(L=0, 8645, print(L, " ", B(n,k)); k++; if(k>n, k=0; n++)) /* Washington Bomfim, Jun 30 2012 */
-
Python
from sympy import binomial as C, totient, divisors, gcd def T(n, k): return 1 if n==0 else C((n//2) - k%2 * (1 - n%2), (k//2))/2 + sum(totient(d)*C(n//d, k//d) for d in divisors(gcd(n, k)))/(2*n) for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 23 2017
Formula
T(0,0) = 1. If n > 0, T(n,k) = binomial(floor(n/2) - (k mod 2) * (1 - (n mod 2)), floor(k/2)) / 2 + Sum_{d|n, d|k} (phi(d)*binomial(n/d, k/d)) / (2*n). - Washington Bomfim, Jun 30 2012 [edited by Petros Hadjicostas, May 29 2019]
From Freddy Barrera, Apr 21 2019: (Start)
T(n,k) = T(n, n-k) for each k < n (Theorem 2 of H. Gupta). (End)
G.f. for column k >= 1: (x^k/2) * ((1/k) * Sum_{m|k} phi(m)/(1 - x^m)^(k/m) + (1 + x)/(1 - x^2)^floor((k/2) + 1)). (This formula is due to Herbert Kociemba.) - Petros Hadjicostas, May 25 2019
Bivariate o.g.f.: Sum_{n,k >= 0} T(n, k)*x^n*y^k = (1/2) * ((x + 1) * (x*y + 1) / (1 - x^2 * (y^2 + 1)) + 1 - Sum_{d >= 1} (phi(d)/d) * log(1 - x^d * (1 + y^d))). - Petros Hadjicostas, Jun 13 2019
Comments