cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052324 Number of increasing rooted trees with a forbidden limb of length 3.

Original entry on oeis.org

0, 1, 1, 2, 5, 19, 90, 520, 3475, 26550, 228050, 2177020, 22860090, 261870070, 3249793360, 43432062300, 621911561150, 9498946124800, 154152712434600, 2648808048264400, 48043086765929200, 917249983543337400
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

In an increasing rooted tree, nodes are numbered and numbers increase as you move away from root.
A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Assuming[{Element[x, Reals], x > 0}, Series[-Log[1-6^(1/3)*Gamma[1/3]/3 + 1/3*x*ExpIntegralE[2/3, x^3/6]], {x, 0, 20}]], x]*Range[0, 20]! (* Vaclav Kotesovec, Mar 28 2014 *)
  • PARI
    {a(n)=local(A=x); for(i=0, n, A=intformal(exp(A-x^3/6+O(x^n)) )); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 28 2014

Formula

E.g.f. satisfies A'(x) = exp(A(x) - x^3/6). - corrected by Vaclav Kotesovec, Mar 28 2014
a(n) ~ d^n * (n-1)!, where d = 0.9546118344740519430556804... - Vaclav Kotesovec, Mar 28 2014
In closed form, d = 1/r, where r = 1.04754620033697244977759528695194261... is the root of the equation 1 = Integral_{x=0..r} exp(-x^3/6) dx. - Vaclav Kotesovec, Aug 21 2014