cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117156 Number of permutations avoiding the consecutive pattern 1342.

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 630, 4210, 32150, 276210, 2636720, 27687440, 317169270, 3936056080, 52603684760, 753241509900, 11504852242400, 186705357825800, 3208160592252000, 58188413286031600, 1110946958902609400
Offset: 0

Views

Author

Steven Finch, Apr 26 2006

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 1342. It is the same as the number of permutations which avoid 2431, 4213, 3124, 1432, 2341, 4123 or 3214.

References

  • Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. Appl. Math. 36 (2006) 138-155.
  • Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003) 110-125.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Coefficient[Series[1/(1-Integrate[Exp[ -t^3/6],{t,0,x}]),{x,0,30}],x^n]*n!
    (* Second program: *)
    m = 21; gf = 1/(1-Sum[If[Mod[k, 3] == 0, (-1)^Mod[k, 6]/(6^(k/3)*(k/3)!), 0]* (x^(k+1)/(k+1)), {k, 0, m}]);
    CoefficientList[gf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 11 2019 *)

Formula

a(n) ~ c * d^n * n!, where d = 1/r = 0.9546118344740519430556804334164431663486451742931588346372174751881329..., where r = 1.04754620033697244977759528695194261... is the root of the equation integral_{x,0,r} exp(-x^3/6) dx = 1, and c = 1.1561985648406071020520797542907648300587978482957199521032311960968187467... . - Vaclav Kotesovec, Aug 23 2014

A002990 Number of n-node trees with a forbidden limb of length 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 9, 19, 38, 86, 188, 439, 1026, 2472, 5997, 14835, 36964, 93246, 236922, 607111, 1565478, 4062797, 10599853, 27797420, 73224806, 193709710, 514406793, 1370937140, 3665714528, 9831891555, 26445886506, 71325268179
Offset: 0

Views

Author

Keywords

Comments

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

References

  • A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=4, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
             g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 4, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052327.
a(n) ~ c * d^n / n^(5/2), where d = 2.9224691962496551739365155005926..., c = 0.503471518908815272581177797536... . - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms, formula and comments from Christian G. Bower, Dec 15 1999
Showing 1-2 of 2 results.