cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A117158 Number of permutations avoiding the consecutive pattern 1234.

Original entry on oeis.org

1, 1, 2, 6, 23, 111, 642, 4326, 33333, 288901, 2782082, 29471046, 340568843, 4263603891, 57482264322, 830335952166, 12793889924553, 209449977967081, 3630626729775362, 66429958806679686, 1279448352687538463, 25874432578888440471, 548178875969847203202
Offset: 0

Views

Author

Steven Finch, Apr 26 2006

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 1234. It is the same as the number of permutations which avoid 4321.

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962, pages 156-157.

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          `if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
          add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 07 2013
  • Mathematica
    a[n_]:=Coefficient[Series[2/(Cos[x]-Sin[x]+Exp[ -x]),{x,0,30}],x^n]*n!
    (* second program: *)
    b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)

Formula

From Sergei N. Gladkovskii, Nov 30 2011: (Start)
E.g.f.: 2/(exp(-x) + cos(x) - sin(x)) = 1/W(0) with continued fraction
W(k) = 1 + (x^(2*k))/(f + f*x/(4*k + 1 - x - (4*k + 1)*b/R)), where R := x^(2*k) + b -(x^(4*k+1))/(c + (x^(2*k+1)) + x*c/T); T := 4*k + 3 - x - (4*k + 3)*d/(d +(x^(2*k+1))/W(k+1)), and
f := (4*k)!/(2*k)!; b := (4*k + 1)!/(2*k + 1)!; c := (4*k + 2)!/(2*k + 1)!; and d :=(4*k + 3)!/(2*k + 2)!. (End)
a(n) ~ n! / (sin(r)*r^(n+1)), where r = 1.0384156372665563... is the root of the equation exp(-r) + cos(r) = sin(r). - Vaclav Kotesovec, Dec 11 2013

A022558 Number of permutations of length n avoiding the pattern 1342.

Original entry on oeis.org

1, 1, 2, 6, 23, 103, 512, 2740, 15485, 91245, 555662, 3475090, 22214707, 144640291, 956560748, 6411521056, 43478151737, 297864793993, 2059159989914, 14350039389022, 100726680316559, 711630547589023, 5057282786190872, 36132861123763276, 259423620328055093
Offset: 0

Views

Author

Keywords

Comments

Differs from A117156 which counts permutations avoiding the *consecutive* pattern 1342. - Ray Chandler, Dec 06 2011
Also, number of permutation of length n avoiding the pattern 3142 (see Stankova (1994) below). - Alexander Burstein, Aug 09 2013
Conjecture: a(n) is the number of permutations of length n simultaneously avoiding patterns 2143 and 415263. - Alexander Burstein, Mar 21 2019

Examples

			a(4) = 23 because obviously all permutations of length 4 with the exception of 1342 avoid 1342.
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 768, Th. 12.1.14.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.48.

Crossrefs

Essentially the same as A004040.
Cf. A117158.
A005802, A022558, A061552 are representatives for the three Wilf classes for length-four avoiding permutations (cf. A099952).

Programs

  • Maple
    a := proc (n) options operator, arrow: (1/2)*(-1)^(n-1)*(7*n^2-3*n-2)+3*(sum((-1)^(n-i)*2^(i+1)*factorial(2*i-4)*binomial(n-i+2, 2)/(factorial(i)*factorial(i-2)), i = 2 .. n)) end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Oct 15 2014
  • Mathematica
    Table[SeriesCoefficient[32*x/(1+20*x-8*x^2-(1-8*x)^(3/2)),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
    Table[1/2*(-1)^(n-1) * (-2-3*n+7*n^2) + 1/4*(-1)^n * (1+n) * (-2-13*n+(n+2) * Hypergeometric2F1[-3/2,-n,-2-n,-8]),{n,0,20}] (* Vaclav Kotesovec, Aug 24 2014 *)
  • PARI
    x='x+O('x^66); Vec( 32*x/(1+20*x-8*x^2-(1-8*x)^(3/2)) ) \\ Joerg Arndt, May 04 2013

Formula

a(n) = (7*n^2-3*n-2)/2 * (-1)^(n-1) + 3*Sum_{i=2..n} 2^(i+1) * (2*i-4)!/(i!*(i-2)!) * binomial(n-i+2, 2) * (-1)^(n-i).
G.f.: 32*x/(1 + 20*x - 8*x^2 - (1 - 8*x)^(3/2)). - Emeric Deutsch, Mar 13 2004
Recurrence: n*a(n) = (7*n-22)*a(n-1) + 4*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ 2^(3*n+6)/(243*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Oct 07 2012

Extensions

Minor edits by Vaclav Kotesovec, Aug 24 2014

A117226 Number of permutations of [n] avoiding the consecutive pattern 1243.

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 630, 4204, 32054, 274914, 2619692, 27459344, 313990182, 3889585408, 51888955808, 741668212080, 11307669002720, 183174676857608, 3141820432768752, 56882461258572976, 1084056190235653304, 21692744773505849952, 454758269790599361968
Offset: 0

Views

Author

Steven Finch, Apr 26 2006

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 1243. It is the same as the number of permutations which avoid 3421, 4312 or 2134.

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, 0), j=`if`(t<0, -t, 1)..u)+
          add(b(u+j-1, o-j, `if`(t=0, j, -j)), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 07 2013
  • Mathematica
    A[x_]:=Integrate[AiryAi[ -t],{t,0,x}]; B[x_]:=Integrate[AiryBi[ -t],{t,0,x}];
    c=-3^(2/3)*Gamma[2/3]/2; d=-3^(1/6)*Gamma[2/3]/2;
    a[n_]:=SeriesCoefficient[1/(c*A[x]+d*B[x]+1),{x,0,n}]*n!; Table[a[n],{n,0,10}] (* fixed by Vaclav Kotesovec, Aug 23 2014 *)
    (* constant d: *) 1/x/.FindRoot[3^(2/3)*Gamma[2/3]/2 * Integrate[AiryAi[-t],{t,0,x}] + 3^(1/6)*Gamma[2/3]/2 * Integrate[AiryBi[-t],{t,0,x}]==1,{x,1},WorkingPrecision->50] (* Vaclav Kotesovec, Aug 23 2014 *)

Formula

a(n) ~ c * d^n * n!, where d = 0.952891423325053197208702817349165942637814..., c = 1.169657787464830219717093446929792145316... . - Vaclav Kotesovec, Aug 23 2014
From Petros Hadjicostas, Nov 01 2019: (Start)
E.g.f.: 1/W(z), where W(z) := 1 + Sum_{n >= 0} (-1)^(n+1)* z^(3*n+1)/(b(n)*(3*n+1)) with b(n) = A176730(n) = (3*n)!/(3^n*(1/3)_n). (Here (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol, or rising factorial, which is denoted by (x)^n in some papers and books.) The function W(z) satisfies the o.d.e. W'''(z) + z*W'(z) = 0 with W(0) = 1, W'(0) = -1, and W''(0) = 0. [See Theorem 4.3 (Case 1243 with u = 0) in Elizalde and Noy (2003).]
a(n) = Sum_{m = 0..floor((n-1)/3)} (-3)^m * (1/3)_m * binomial(n, 3*m+1) * a(n-3*m-1) for n >= 1 with a(0) = 1. (End)

A113228 a(n) is the number of permutations of [1..n] that avoid the consecutive pattern 1324 (equally, the permutations that avoid 4231).

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 632, 4229, 32337, 278204, 2659223, 27959880, 320706444, 3985116699, 53328433923, 764610089967, 11693644958690, 190015358010114, 3269272324528547, 59373764638615449, 1135048629795612125, 22783668363316052016, 479111084084119883217
Offset: 0

Views

Author

David Callan, Oct 19 2005

Keywords

Examples

			In 24135, the entries 2435 are in relative order 1324 but they do not occur consecutively and 24135 avoids the consecutive 1324 pattern.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
           add(b(u-j, o+j-1, `if`(t>0 and j b(n, 0, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 07 2013
  • Mathematica
    Clear[u, v, w]; w[0]=1; w[1]=1;w[2]=2; w[n_]/;n>=3 := w[n] = Sum[w[n, a], {a, n}]; w[1, 1] = w[2, 1] = w[2, 2] = 1; w[n_, a_]/;n>=3 && 1<=a<=n := Sum[u[n, a, b], {b, a+1, n}] + v[n, a]; v[1, 1]=1; v[n_, a_]/;n>=2 && a==1 := 0; v[n_, a_]/;n>=2 && 2<=a<=n := wCumulative[n-1, a-1]; wCumulative[n_, k_]/;Not[1<=k<=n] := 0; wCumulative[n_, k_]/;1<=k<=n := wCumulative[n, k] = Sum[w[n, a], {a, k}]; u[n_, a_, b_]/;Not[1<=a=4 && 1<=a0 && j < t, -j, 0]], {j, 1, u}] + Sum[b[u+j-1, o-j, j], {j, 1, If[t<0, Min[-t-1, o], o]}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 19 2017, after Alois P. Heinz *)

Formula

In the recurrence coded in Mathematica below, w[n, a] = #1324-avoiding permutations on [n] with first entry a; u[n, a, b] is the number that start with an ascent a=2). The main sum for u[n, a, b] counts by length k of the longest initial increasing subsequence. The cases k=2, k=3, k>=4 are considered separately.
a(n) ~ c * d^n * n!, where d = 0.9558503134742499886507376383060906722796..., c = 1.15104449887019137479444895134035262624... . - Vaclav Kotesovec, Aug 23 2014

A177478 Permutations avoiding the consecutive patterns 4312 and 4213.

Original entry on oeis.org

1, 1, 2, 6, 22, 100, 540, 3388, 24248, 195048, 1742860, 17127880, 183617280, 2132433940, 26669752928, 357375269160, 5108084756320, 77574769941760, 1247401873186560, 21172559509803520, 378282904982091200, 7096584257305845120, 139471475802695196160
Offset: 0

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

Keywords

Comments

a(n) gives the number of permutations of [n] which avoid both the pattern 4312 and 4213 consecutively. Also the number avoiding the pairs {2134, 3124}, {1243, 1342}, or {3421, 2431} (by symmetry).
This can also be considered avoiding a partially ordered pattern: Suppose p
The Baxter-Nakamura-Zeilberger paper has an associated Maple package. See Links.

Crossrefs

Programs

  • Maple
    b:= proc(u, o, s, t) option remember; `if`(u+o=0, 1,
           add(b(u-j, o+j-1, t, j), j=1..u)+
           add(b(u+j-1, o-j, 0, 0), j=`if`(s>0, s+t-1, 1)..o))
        end:
    a:= n-> b(0, n, 0, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 25 2013
  • Mathematica
    b[u_, o_, s_, t_] := b[u, o, s, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, t, j], {j, 1, u}] + Sum[b[u+j-1, o-j, 0, 0], {j, If[s > 0, s+t-1, 1], o}]];
    a[n_] := b[0, n, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 03 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n * n!, where d = 0.89333294588184091624317413051..., c = 1.4839698712287023868073431417... . - Vaclav Kotesovec, Aug 24 2014

Extensions

More terms, succinct title, additional comments, new references from Andrew Baxter, Jan 21 2011

A113229 Number of permutations avoiding the consecutive pattern 3412.

Original entry on oeis.org

1, 1, 2, 6, 23, 110, 631, 4223, 32301, 277962, 2657797, 27954521, 320752991, 3987045780, 53372351265, 765499019221, 11711207065229, 190365226548070, 3276401870322033, 59523410471007913, 1138295039078030599, 22856576346825690128, 480807130959249565541
Offset: 0

Author

David Callan, Oct 19 2005

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 3412 (also number that avoid 2143).

Examples

			The 5! - a(5) = 10 permutations on [5] not counted by a(5) are 14523, 24513, 34125, 34512, 35124, 43512, 45123, 45132, 45231, 53412.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, `if`(t>0 and j>t, t-j, 0)), j=1..u)+
          add(b(u+j-1, o-j, j), j=`if`(t<0,1-t,1)..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 07 2013
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, If[t>0 && j>t, t-j, 0]], {j, 1, u}] + Sum[b[u+j-1, o-j, j], {j, Range[If[t<0, 1-t, 1], o]}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 13 2015, after Alois P. Heinz *)

Formula

The Dotsenko et al. reference gives a g.f. There is an associated triangle of numbers c_{n,l} that should be added to the OEIS if it is not already present.
a(n) ~ c * d^n * n!, where d = 0.9561742431150784273897350385923872770208469..., c = 1.1465405299007850875068632404058971045769... . - Vaclav Kotesovec, Aug 23 2014

A177470 Number of permutations of order n avoiding the consecutive pattern 11'22'.

Original entry on oeis.org

1, 1, 2, 6, 18, 70, 300, 1435, 7910, 47376, 316008, 2314158, 18331236, 158024724, 1462752720, 14497475850, 153488070450, 1724035906450, 20515906356660, 257720354712106, 3406481187714176, 47293781230517640, 687760952277462336, 10456003715906638162, 165890170459303164420
Offset: 0

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

Keywords

Comments

To avoid 11'22' means not to have four consecutive letters such that the first letter is less than the third one and the second letter is less than the fourth one.

Programs

  • C
    // See Links section.

Extensions

a(0) = 1 and a(10)-a(16) from Rémy Sigrist, Mar 13 2023
Edited and a(17)-a(24) added by Max Alekseyev, Oct 01 2024

A376694 Number of permutations of order n avoiding consecutive pattern 121'3.

Original entry on oeis.org

1, 1, 2, 6, 22, 100, 548, 3482, 25256, 206298, 1871704, 18676354, 203323724, 2397969518, 30455963576, 414446765490, 6015821216380, 92778775395190, 1515047281161392, 26114701159308242, 473827422862284740, 9027024454944900390, 180165845677134636856, 3759286756628732868754, 81850596163629861103004
Offset: 0

Author

Max Alekseyev, Oct 01 2024

Keywords

Comments

To avoid 121'3 means not to have four consecutive letters such that the first letter and the third one is less than the second, and the second one is less than and the fourth one.

A177472 Number of permutations of order n avoiding the consecutive pattern 11'2'2.

Original entry on oeis.org

1, 1, 2, 6, 18, 71, 322, 1665, 9789, 64327, 468914, 3748920, 32699022, 308710917, 3138821688, 34186918427, 397173376849, 4902547569617, 64073734206528, 883940288032392, 12836250526983672, 195724485831901029, 3126468139092090818, 52211816154041174670, 909843384081141844312
Offset: 0

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

Keywords

Comments

To avoid 11'2'2 means not to have four consecutive letters such that the first letter is less than the last one, and the second letter is less than the third one.

Extensions

Edited and terms a(0), a(10)-a(24) added by Max Alekseyev, Oct 02 2024

A177473 Number of permutations of order n avoiding the consecutive pattern 12'1'2.

Original entry on oeis.org

1, 1, 2, 6, 18, 61, 272, 1410, 8048, 51550, 372995, 2976679, 25686748, 239687103, 2419267562, 26194183096, 301838412516, 3692782460824, 47891164866100, 655887513203263, 9449915113835659, 142923476094740969, 2265214890150056647, 37539217881003574022, 649054317768293760078
Offset: 0

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010

Keywords

Comments

To avoid 12'1'2 means not to have four consecutive letters such that the first one is less than the fourth letter and the second letter is larger than the third one.

Extensions

Edited and terms a(0), a(10)-a(24) added by Max Alekseyev, Oct 01 2024
Showing 1-10 of 17 results. Next