cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A005802 Number of permutations in S_n with longest increasing subsequence of length <= 3 (i.e., 1234-avoiding permutations); vexillary permutations (i.e., 2143-avoiding).

Original entry on oeis.org

1, 1, 2, 6, 23, 103, 513, 2761, 15767, 94359, 586590, 3763290, 24792705, 167078577, 1148208090, 8026793118, 56963722223, 409687815151, 2981863943718, 21937062144834, 162958355218089, 1221225517285209, 9225729232653663, 70209849031116183, 537935616492552297
Offset: 0

Views

Author

Keywords

Comments

Also the dimension of SL(3)-invariants in V^n tensor (V^*)^n, where V is the standard 3-dimensional representation of SL(3) and V^* is its dual. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
Also the number of doubly-alternating permutations of length 2n with no four-term increasing subsequence (i.e., 1234-avoiding doubly-alternating permutations). The doubly-alternating permutations (counted by sequence A007999) are those permutations w such that both w and w^(-1) have descent set {2, 4, 6, ...}. - Joel B. Lewis, May 21 2009
Any permutation without an increasing subsequence of length 4 has a decreasing subsequence of length >= n/3, where n is the length of the sequence, by the Erdős-Szekeres theorem. - Charles R Greathouse IV, Sep 26 2012
Also the number of permutations of length n simultaneously avoiding patterns 1324 and 3416725 (or 1324 and 3612745). - Alexander Burstein, Jan 31 2014

References

  • Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(e), p. 453.

Crossrefs

A column of A047888. See also A224318, A223034, A223905.
Column k=3 of A214015.
A005802, A022558, A061552 are representatives for the three Wilf classes for length-four avoiding permutations (cf. A099952).

Programs

  • Maple
    a:= n-> 2*add(binomial(2*k,k)*(binomial(n,k))^2*(3*k^2+2*k+1-n-2*k*n)/ (k+1)^2/(k+2)/(n-k+1),k=0..n);
    A005802:=rsolve({a(0) = 1, a(1) = 1, (n^2 + 8*n + 16)*a(n + 2) = (10*n^2 + 42*n + 41)*a(n + 1) - (9*n^2 + 18*n + 9)*a(n)},a(n),makeproc): # Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
  • Mathematica
    a[n_] := 2Sum[Binomial[2k, k]Binomial[n, k]^2(3k^2+2k+1-n-2k*n)/((k+1)^2(k+2)(n-k+1)), {k, 0, n}]
    (* Second program:*)
    a[0] = a[1] = 1; a[n_] := a[n] = ((10*n^2+2*n-3)*a[n-1] + (-9*n^2+18*n-9)* a[n-2])/(n+2)^2; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 20 2017 *)
    Table[HypergeometricPFQ[{1/2, -1 - n, -n}, {2, 2}, 4] / (n+1), {n, 0, 25}] (* Vaclav Kotesovec, Jun 07 2021 *)
  • PARI
    a(n)=2*sum(k=0,n,binomial(2*k,k)*binomial(n,k)^2*(3*k^2+2*k+1-n-2*k*n)/(k+1)^2/(k+2)/(n-k+1)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 2 * Sum_{k=0..n} binomial(2*k, k) * (binomial(n, k))^2 * (3*k^2 + 2*k+1 - n - 2*k*n)/((k+1)^2 * (k+2) * (n-k+1)).
(4*n^2 - 2*n + 1)*(n + 2)^2*(n + 1)^2*a(n) = (44*n^3 - 14*n^2 - 11*n + 8)*n*(n + 1)^2*a(n - 1) - (76*n^4 + 42*n^3 - 49*n^2 - 24*n + 24)*(n - 1)^2*a(n - 2) + 9*(4*n^2 + 6*n + 3)*(n - 1)^2*(n - 2)^2*a(n - 3). - Vladeta Jovovic, Jul 16 2004
a(0) = 1, a(1) = 1, (n^2 + 8*n + 16)*a(n + 2) = (10*n^2 + 42*n + 41) a(n + 1) - (9*n^2 + 18*n + 9) a(n). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005
a(n) = ((18*n+45)*A002893(n) - (7+2*n)*A002893(n+1)) / (6*(n+2)^2). - Mark van Hoeij, Jul 02 2010
G.f.: (1+5*x-(1-9*x)^(3/4)*(1-x)^(1/4)*hypergeom([-1/4, 3/4],[1],64*x/((x-1)*(1-9*x)^3)))/(6*x^2). - Mark van Hoeij, Oct 25 2011
a(n) ~ 3^(2*n+9/2)/(16*Pi*n^4). - Vaclav Kotesovec, Jul 29 2013
a(n) = Sum_{k=0..n} binomial(2k,k)*binomial(n+1,k+1)*binomial(n+2,k+1)/((n+1)^2*(n+2)). [Conway and Guttmann, Adv. Appl. Math. 64 (2015) 50]
For n > 0, (n+2)^2*a(n) - n^2*a(n-1) = 4*A086618(n). - Zhi-Wei Sun, Nov 16 2017
a(n) = hypergeom([1/2, -1 - n, -n], [2, 2], 4) / (n+1). - Vaclav Kotesovec, Jun 07 2021

Extensions

Additional comments from Emeric Deutsch, Dec 06 2000
More terms from Naohiro Nomoto, Jun 18 2001
Edited by Dean Hickerson, Dec 10 2002
More terms from Alec Mihailovs (alec(AT)mihailovs.com), Aug 14 2005

A064062 Generalized Catalan numbers C(2; n).

Original entry on oeis.org

1, 1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Comments

a(n+1) = Y_{n}(n+1) = Z_{n}, n >= 0, in the Derrida et al. 1992 reference (see A064094) for alpha=2, beta=1 (or alpha=1, beta=2).
a(n) = number of Dyck n-paths (A000108) in which each upstep (U) not at ground level is colored red (R) or blue (B). For example, a(3)=3 counts URDD, UBDD, UDUD (D=downstep). - David Callan, Mar 30 2007
The Hankel transform of this sequence is A002416. - Philippe Deléham, Nov 19 2007
The sequence a(n)/2^n, with g.f. 1/(1-xc(x)/2), has Hankel transform 1/2^n. - Paul Barry, Apr 14 2008
The REVERT transform of the odd numbers [1,3,5,7,9,...] is [1, -3, 13, -67, 381, -2307, 14589, -95235, 636925, ...] - N. J. A. Sloane, May 26 2017

Crossrefs

Generalized Catalan numbers C(m; n): A000012 (m = 0), A000108 (m = 1), A064063 (m = 3) and A064087 - A064093 (m = 4 thru 10); A064310 (m = -1), A064311 (m = -2) and A064325 - A064333 (m = -3 thru -11).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!( (3 - Sqrt(1-8*x))/(2*(1+x)) )); // G. C. Greubel, Sep 27 2024
  • Maple
    1, seq(simplify(hypergeom([1-n,n],[-n],2)), n=1..100); # Robert Israel, Nov 30 2014
  • Mathematica
    a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[(a[k] + a[k-1])a[n-k],{k,n-1}]; Table[a[n],{n,0,10}] (* David Callan, Aug 27 2009 *)
    a[n_] := 2*Sum[ (-1)^j*2^(n-j-1)*Binomial[2*(n-j-1), n-j-1]/(n-j), {j, 0, n-1}] + (-1)^n; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 03 2013 *)
  • PARI
    {a(n)=polcoeff((3-sqrt(1-8*x+x*O(x^n)))/(2+2*x),n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^2+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 24 2013
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(1/(1 - serreverse(x-2*x^2 +x^2*O(x^n))),n)}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 30 2014
    
  • Sage
    def a(n):
        if n==0: return 1
        return hypergeometric([1-n, n], [-n], 2).simplify()
    [a(n) for n in range(22)] # Peter Luschny, Dec 01 2014
    

Formula

G.f.: (1 + 2*x*C(2*x)) / (1+x) = 1/(1 - x*C(2*x)) with C(x) g.f. of Catalan numbers A000108.
a(n) = A062992(n-1) = Sum_{m = 0..n-1} (n-m)*binomial(n-1+m, m)*(2^m)/n, n >= 1, a(0) = 1.
a(n) = Sum_{k = 0..n} A059365(n, k)*2^(n-k). - Philippe Deléham, Jan 19 2004
G.f.: 1/(1-x/(1-2x/(1-2x/(1-2x/(1-.... = 1/(1-x-2x^2/(1-4x-4x^2/(1-4x-4x^2/(1-.... (continued fractions). - Paul Barry, Jan 30 2009
a(n) = (32/Pi)*Integral_{x = 0..1} (8*x)^(n-1)*sqrt(x*(1-x)) / (8*x+1). - Groux Roland, Dec 12 2010
a(n+2) = 8^(n+2)*( c(n+2)-c(1)*c(n+1) - Sum_{i=0..n-1} 8^(-i-2)*c(n-i)*a(i+2) ) with c(n) = Catalan(n+2)/2^(2*n+1). - Groux Roland, Dec 12 2010
a(n) = the upper left term in M^n, M = the production matrix:
1, 1
2, 2, 1
4, 4, 2, 1
8, 8, 4, 2, 1
... - Gary W. Adamson, Jul 08 2011
D-finite with recurrence: n*a(n) + (12-7n)*a(n-1) + 4*(3-2n)*a(n-2) = 0. - R. J. Mathar, Nov 16 2011 (This follows easily from the generating function. - Robert Israel, Nov 30 2014)
G.f. satisfies: A(x) = 1 + A(x)^4 * Integral 1/A(x)^2 dx. - Paul D. Hanna, Dec 24 2013
G.f. satisfies: Integral 1/A(x)^2 dx = x - x^2*G(x), where G(x) is the o.g.f. of A000257, the number of rooted bicubic maps. - Paul D. Hanna, Dec 24 2013
G.f. A(x) satisfies: A(x - 2*x^2) = 1/(1-x). - Paul D. Hanna, Nov 30 2014
a(n) = hypergeometric([1-n, n], [-n], 2) for n > 0. - Peter Luschny, Nov 30 2014
G.f.: (3 - sqrt(1-8*x))/(2*(x+1)). - Robert Israel, Nov 30 2014
a(n) ~ 2^(3*n+1) / (9*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Dec 22 2014
O.g.f. A(x) = 1 + series reversion of (x*(1 - x)/(1 + x)^2). Logarithmically differentiating (A(x) - 1)/x gives 3 + 17*x + 111*x^2 + ..., essentially a g.f for A119259. - Peter Bala, Oct 01 2015
From Peter Bala, Jan 06 2022: (Start)
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 6*x^3 + 23*x^4 + ... is a g.f. for A022558.
The Gauss congruences a(n*p^k) == a(n^p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)

A117158 Number of permutations avoiding the consecutive pattern 1234.

Original entry on oeis.org

1, 1, 2, 6, 23, 111, 642, 4326, 33333, 288901, 2782082, 29471046, 340568843, 4263603891, 57482264322, 830335952166, 12793889924553, 209449977967081, 3630626729775362, 66429958806679686, 1279448352687538463, 25874432578888440471, 548178875969847203202
Offset: 0

Views

Author

Steven Finch, Apr 26 2006

Keywords

Comments

a(n) is the number of permutations on [n] that avoid the consecutive pattern 1234. It is the same as the number of permutations which avoid 4321.

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962, pages 156-157.

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          `if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
          add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 07 2013
  • Mathematica
    a[n_]:=Coefficient[Series[2/(Cos[x]-Sin[x]+Exp[ -x]),{x,0,30}],x^n]*n!
    (* second program: *)
    b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)

Formula

From Sergei N. Gladkovskii, Nov 30 2011: (Start)
E.g.f.: 2/(exp(-x) + cos(x) - sin(x)) = 1/W(0) with continued fraction
W(k) = 1 + (x^(2*k))/(f + f*x/(4*k + 1 - x - (4*k + 1)*b/R)), where R := x^(2*k) + b -(x^(4*k+1))/(c + (x^(2*k+1)) + x*c/T); T := 4*k + 3 - x - (4*k + 3)*d/(d +(x^(2*k+1))/W(k+1)), and
f := (4*k)!/(2*k)!; b := (4*k + 1)!/(2*k + 1)!; c := (4*k + 2)!/(2*k + 1)!; and d :=(4*k + 3)!/(2*k + 2)!. (End)
a(n) ~ n! / (sin(r)*r^(n+1)), where r = 1.0384156372665563... is the root of the equation exp(-r) + cos(r) = sin(r). - Vaclav Kotesovec, Dec 11 2013

A099952 Number of Wilf classes in S_n.

Original entry on oeis.org

1, 1, 1, 3, 16, 91, 595
Offset: 1

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

References

  • Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290.

Crossrefs

Representatives for the three Wilf classes in S_4 are A005802, A022558, A061552. - N. J. A. Sloane, Mar 15 2015
Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208. - N. J. A. Sloane, Mar 19 2015

A061552 Number of 1324-avoiding permutations of length n.

Original entry on oeis.org

1, 1, 2, 6, 23, 103, 513, 2762, 15793, 94776, 591950, 3824112, 25431452, 173453058, 1209639642, 8604450011, 62300851632, 458374397312, 3421888118907, 25887131596018, 198244731603623, 1535346218316422, 12015325816028313, 94944352095728825, 757046484552152932, 6087537591051072864
Offset: 0

Views

Author

Darko Marinov (marinov(AT)lcs.mit.edu), May 17 2001

Keywords

Examples

			a(4)=23 because all 24 permutations of length 4, except 1324 itself, avoid the pattern 1324.
		

References

  • Miklós Bóna, Combinatorics of Permutations. Discrete Mathematics and its Applications (Boca Raton), 2nd edn. CRC Press, Boca Raton (2012).

Crossrefs

A005802, A022558, A061552 are representatives for the three Wilf classes for length-four avoiding permutations (cf. A099952).

Programs

  • Maple
    count1324 := proc(n::nonnegint) if (n<4) then return n!; fi; if (n=4) then return 23; fi; return nodes([5,5,5,5], n-5) + nodes([5,3,5,5], n-5) + nodes([5,4,4,5], n-5) + nodes([5,5,4,5], n-5) + nodes([4,3,4], n-5) + nodes([5,3,4,5], n-5); end:
    nodes := proc(p, h) option remember; local i, j, s, l; if (h=0) then return convert(p, `+`); fi; s := 0; for j to nops(p) do l := p[j]+1; for i from 2 to j do l := l, `min`(j+1, p[i]); od; for i from j+1 to p[j] do l := l, p[i-1]+1; od; s := s+nodes([l], h-1); od; return s; end:
  • Mathematica
    a[n_] := n!/;n<4; a[4]=23; a[n_] := Total[nodes[#,n-5]&/@{{4,3,4},{5,3,4,5},{5,3,5,5},{5,4,4,5},{5,5,4,5},{5,5,5,5}}]; nodes[p_,0]:=Total[p]; nodes[p_,h_] := nodes[p,h] = Sum[nodes[Join[{p[[j]]+1}, Min[j+1,#]&/@p[[2;;j]], p[[j;;p[[j]]-1]]+1],h-1], {j,Length[p]}]; Array[a,12] (* David Bevan, May 25 2012 *)

Extensions

More terms from Vincent Vatter, Feb 26 2005
a(23)-a(25) added from the Albert et al. paper by N. J. A. Sloane, Mar 29 2013

A342840 Irregular triangle: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 4213. 0 <= k <= A342646(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 10, 6, 1, 512, 77, 69, 30, 21, 5, 6, 2740, 548, 598, 330, 335, 123, 174, 58, 58, 37, 26, 3, 9, 1, 15485, 3799, 4686, 2970, 3411, 1676, 2338, 1040, 1317, 878, 777, 363, 608, 230, 252, 165, 133, 30, 93, 26, 31, 4, 1, 3, 4, 91245, 26165, 35148, 24550, 30182, 17185, 24685, 12976, 16867, 12248, 12360, 7203, 11086, 5692, 6391, 5194, 5006, 2751, 3917, 2019, 2482, 1622, 1371, 812, 1233, 490, 495, 416, 360, 157, 282, 54, 78, 41, 29, 22, 49, 7, 4, 0, 6
Offset: 0

Views

Author

Peter Kagey, Mar 24 2021

Keywords

Comments

The sequence is the same for the patterns 1342, 2431, and 3124.
The sequence appears to be the same for the patterns 1423, 2314, 3241, and 4132.
First column is given by A022558. Row sums given by n!.

Examples

			Triangle begins:
n\k |    0    1    2    3    4    5    6   7   8   9  10 11 12 13
----+-------------------------------------------------------------
  0 |    1;
  1 |    1;
  2 |    2;
  3 |    6;
  4 |   23,   1;
  5 |  103,  10,   6,   1;
  6 |  512,  77,  69,  30,  21,   5,   6;
  7 | 2740, 548, 598, 330, 335, 123, 174, 58, 58, 37, 26, 3, 9, 1;
		

Crossrefs

Cf. A263771 (analogous for 312).

Programs

  • Mathematica
    Join@@Array[Table[Length@Select[Permutations@Range@#,Length@Select[Subsets[#,{4}],Ordering@Ordering@#=={4,2,1,3}&]==k&],{k,0,Binomial[n+1,4]}]//.{a__,0}:>{a}&,8,0] (* Giorgos Kalogeropoulos, Mar 25 2021 *)

A342860 Irregular table read by rows: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 2413. 0 <= k <= A342854(n).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 103, 9, 8, 512, 62, 82, 34, 28, 2, 2740, 402, 612, 384, 466, 94, 232, 42, 60, 8, 15485, 2593, 4187, 3036, 4356, 1746, 3132, 1064, 1918, 909, 654, 333, 612, 144, 104, 22, 24, 1, 91245, 16921, 28065, 21638, 33274, 17598, 31180, 12942, 24000, 14290, 15434, 7770, 15692, 5965, 6896, 3947, 5660, 2226, 3674, 1314, 1512, 516, 508, 204, 332, 37, 40
Offset: 0

Views

Author

Peter Kagey, Mar 26 2021

Keywords

Comments

Equivalently the table for the pattern 3142.
First column is A022558.

Examples

			Triangle begins:
  n\k|       0       1        2        3        4        5        6
  ---+------------------------------------------------------------------
   0 |       1;
   1 |       1;
   2 |       2;
   3 |       6;
   4 |      23,      1;
   5 |     103,      9,       8;
   6 |     512,     62,      82,      34,      28,       2;
   7 |    2740,    402,     612,     384,     466,      94,     232, ...
   8 |   15485,   2593,    4187,    3036,    4356,    1746,    3132, ...
   9 |   91245,  16921,   28065,   21638,   33274,   17598,   31180, ...
  10 |  555662, 112196,  188514,  149946,  237128,  140954,  257686, ...
  11 | 3475090, 755920, 1278590, 1036826, 1658064, 1041598, 1933438, ...
		

Crossrefs

Analogous for other patterns: A008302 (12), A138159 (321), A263771 (312), A342840 (1342), A342861 (1324), A342862 (2143), A342863 (1243), A342864 (1432), A342865 (1234).

A006395 Number of unsensed planar maps with n edges and without loops or parallel edges.

Original entry on oeis.org

1, 1, 1, 3, 5, 14, 42, 150, 624, 2947, 15079, 82607, 474030, 2816952, 17194524, 107226255
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered here are connected. A planar map without loops or parallel edges is called simple.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A384850, antidiagonal sums of A384963.
Cf. A006385, A006391, A006394 (sensed), A022558 (rooted), A372892 (with n vertices).

Extensions

a(9)-a(12) from Sean A. Irvine, Mar 30 2017
a(0)=1 prepended by Andrew Howroyd, Jan 16 2025
a(13)-a(15) added by Andrew Howroyd, Jun 15 2025

A006394 Number of sensed planar maps with n edges and without loops or parallel edges.

Original entry on oeis.org

1, 1, 1, 3, 5, 15, 52, 213, 1002, 5167, 27967, 158447, 926786
Offset: 0

Views

Author

Keywords

Comments

The planar maps considered here are connected. A planar map without loops or parallel edges is called simple. - Andrew Howroyd, Jan 16 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006384, A006390, A006395 (unsensed), A022558 (rooted).

Extensions

a(9)-a(12) from Sean A. Irvine, Mar 30 2017
a(0)=1 prepended by Andrew Howroyd, Jan 16 2025

A342646 Maximal number of 4213 patterns in a permutation of 1,2,...,n.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 6, 13, 24, 40, 62, 96, 138, 192, 264, 354
Offset: 0

Views

Author

Peter Kagey, Mar 20 2021

Keywords

Comments

Equivalently the maximal number of 1342, 2431, and 3124 patterns.

Examples

			For n = 7, a(7) = 13 because the permutation 7532146 has 13 instances of the pattern 4213, namely: 7536, 7526, 7516, 7546, 7324, 7326, 7314, 7316, 7214, 7216, 5324, 5314, and 5214.
Moreover, all other permutations in S_7 have 13 or fewer instances of this pattern.
		

Crossrefs

Analogous for other patterns: A000292 (123), A000332 (1234), A061061 (132), A100354 (1432).

Extensions

a(10)-a(12) from Rob Pratt
a(13)-a(15) from Bert Dobbelaere, Mar 26 2021
Showing 1-10 of 16 results. Next