A052325 Number of asymmetric rooted trees with a forbidden limb of length 3.
1, 1, 1, 1, 1, 2, 4, 8, 15, 30, 60, 122, 249, 513, 1061, 2210, 4620, 9708, 20472, 43337, 92023, 196018, 418653, 896485, 1924154, 4139014, 8921349, 19266067, 41679483, 90318082, 196020800, 426055601, 927317334, 2020949226, 4409764169
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i)- `if`(i=3, 1, 0), j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> `if`(n<1, 1, b(n-1, n-1)): seq(a(n), n=1..50); # Alois P. Heinz, Jul 06 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]- If[i==3, 1, 0], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<1, 1, b[n-1, n-1]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
Formula
a(n) satisfies a = SHIFT_RIGHT(WEIGH(a-b)) where b(3)=1, b(k)=0 if k != 3.
a(n) ~ c * d^n / n^(3/2), where d = 2.27671458388797627098091744865..., c = 0.2935911773459468433271794078... . - Vaclav Kotesovec, Aug 25 2014
Comments