cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052325 Number of asymmetric rooted trees with a forbidden limb of length 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 15, 30, 60, 122, 249, 513, 1061, 2210, 4620, 9708, 20472, 43337, 92023, 196018, 418653, 896485, 1924154, 4139014, 8921349, 19266067, 41679483, 90318082, 196020800, 426055601, 927317334, 2020949226, 4409764169
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i)-
          `if`(i=3, 1, 0), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<1, 1, b(n-1, n-1)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 06 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]- If[i==3, 1, 0], j]*b[n-i*j, i-1], {j, 0, n/i}]]];
    a[n_] := If[n<1, 1, b[n-1, n-1]];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

a(n) satisfies a = SHIFT_RIGHT(WEIGH(a-b)) where b(3)=1, b(k)=0 if k != 3.
a(n) ~ c * d^n / n^(3/2), where d = 2.27671458388797627098091744865..., c = 0.2935911773459468433271794078... . - Vaclav Kotesovec, Aug 25 2014