A052327 Number of rooted trees with a forbidden limb of length 4.
1, 1, 2, 4, 8, 18, 43, 102, 251, 625, 1584, 4055, 10509, 27451, 72307, 191697, 511335, 1370995, 3693452, 9991671, 27133149, 73934800, 202096673, 553999573, 1522651908, 4195087022, 11583820212, 32052475655, 88860186023
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Programs
-
Maple
with(numtheory): g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)- `if`(d=4, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n) end: a:= n-> g(n-1): seq(a(n), n=1..35); # Alois P. Heinz, Jul 04 2014
-
Mathematica
g[n_] := g[n] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[# - 1] - If[# == 4, 1, 0])&] * g[n - j], {j, 1, n}]/n]; a[n_] := g[n - 1]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Apr 04 2017, after Alois P. Heinz *)
Formula
a(n) satisfies a = SHIFT_RIGHT(EULER(a-b)) where b(4)=1, b(k)=0 if k != 4.
a(n) ~ c * d^n / n^(3/2), where d = 2.9224691962496551739365155005926289..., c = 0.43112017460637374030857983498164... . - Vaclav Kotesovec, Aug 25 2014
Comments