cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052329 Number of rooted trees with a forbidden limb of length 6.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 47, 113, 281, 706, 1807, 4671, 12224, 32247, 85782, 229683, 618767, 1675618, 4559263, 12457483, 34168574, 94040433, 259637564, 718892281, 1995739380, 5553867981, 15490305017, 43293762352, 121235084565
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
          `if`(d=6, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
        end:
    a:= n-> g(n-1):
    seq(a(n), n=1..35);  # Alois P. Heinz, Jul 04 2014
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 6, 1, 0]), {d, Divisors[j]} ]*g[n-j], {j, 1, n}]/n]; a[n_] := g[n-1]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

a(n) satisfies a=SHIFT_RIGHT(EULER(a-b)) where b(6)=1, b(k)=0 if k != 6.
a(n) ~ c * d^n / n^(3/2), where d = 2.95209316333202396584501452688304..., c = 0.43842619727838455589811980703038... . - Vaclav Kotesovec, Aug 25 2014