cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052344 Number of ways to write n as the unordered sum of two nonzero triangular numbers.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 0, 1, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 0, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 23 2000

Keywords

Comments

Number of ways to write 8*n+2 as the unordered sum of two odd squares > 1. - Robert Israel, Feb 24 2016
Number of partitions of 2n into two promic numbers > 1. - Wesley Ivan Hurt, Jun 09 2021

Crossrefs

Programs

  • Maple
    G:= (1/8)*(JacobiTheta2(0, sqrt(q))^2-4*JacobiTheta2(0, sqrt(q))*q^(1/8)+2*JacobiTheta2(0, q))/q^(1/4):
    S:= series(G,q,1001):
    seq(coeff(S,q,j),j=0..1000); # Robert Israel, Feb 24 2016
  • Mathematica
    nn=150; tri=Accumulate[Range[nn]]; t=Table[0, {tri[[-1]]}]; Do[n=tri[[i]]+tri[[j]]; If[n <= tri[[-1]], t[[n]]++], {i,nn}, {j,i}]; t=Prepend[t,0]

Formula

G.f.: (Theta_2(sqrt(x))^2 - 4*x^(1/8)*Theta_2(sqrt(x)) + 2*Theta_2(x))/(8*x^(1/4)) where Theta_2 is a Jacobi theta function. - Robert Israel, Feb 24 2016
a(n) = Sum_{k=1..n} c(k) * c(2*n-k), where c(n) is the characteristic function of promic numbers (A005369). - Wesley Ivan Hurt, Jun 09 2021
a(n) = Sum_{k=1..floor(n/2)} c(k) * c(n-k), where c = A010054. - Wesley Ivan Hurt, Jan 06 2024