cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052352 Least prime in A031924 (lesser of 6-twins) such that the distance to the next 6-twin is 2*n.

Original entry on oeis.org

47, 23, 73, 61, 353, 31, 233, 131, 331, 653, 2441, 3733, 1033, 4871, 1063, 1621, 503, 607, 4211, 7823, 2287, 83, 383, 1231, 2903, 5981, 1123, 173, 11981, 11833, 1367, 2063, 4723, 19681, 2207, 2131, 2713, 9533, 6571, 1657, 23081, 15913, 7013, 14051, 9967, 22447
Offset: 3

Views

Author

Labos Elemer, Mar 07 2000

Keywords

Comments

The increment of distance of 6-twins (A053321) is 2 (not 6), the smallest distance (A052380) is 6.
The middle gap 2n-6 may include primes, e.g., n = 12, a(12) = 653 and between 659 and 659 + 2*12 - 6 = 677, two primes occur (661 and 673).
a(n) = p yields a prime quadruple [p, p+6, p+2n, p+2n+6] with difference pattern [6, 2n-6, 6].

Examples

			For n = 3, 4, 5,  the quadruples are [47, 53, 53, 59] (a triple), [23, 29, 31, 37], [73, 79, 83, 89] with 53 - 47 = 6, 31 - 23 = 8 and 83 - 73 = 10 twin distances.
		

Crossrefs

Programs

  • Mathematica
    seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 6] // Flatten; pp = p[[i]]; dd = Differences[pp]/2 - 2; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[10000] (* Amiram Eldar, Mar 04 2025 *)
  • PARI
    list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 11, , if(p2 == p1 + 6, q2 = p1; if(q1 > 0, d = (q2 - q1)/2 - 2; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 04 2025

Extensions

Name and offset corrected by Amiram Eldar, Mar 04 2025