A052350
Least prime in A001359 (lesser of twin primes) such that the distance (A053319) to the next twin is 6*n.
Original entry on oeis.org
5, 17, 41, 617, 71, 311, 2267, 521, 1877, 461, 1721, 347, 1151, 1787, 3581, 2141, 6449, 1319, 21377, 1487, 12251, 4799, 881, 23057, 659, 19541, 12377, 2381, 38747, 10529, 37361, 8627, 9041, 33827, 5879, 80231, 15359, 45821, 36107, 14627, 37991, 36527, 87251, 70997
Offset: 1
The first 3 terms (5, 17, 41) are followed by difference patterns as it is displayed: 5 by [2, 4, 2], 17 by [2, 4+6, 2], 41 by [2, 4+6+6, 2] determining prime quadruples: (5, 7, 11, 13), (17, 19, 29, 31) or (41, 43, 59, 61), respectively.
a(10) = 461 gives the quadruple [461, 463, 521 = 461+60, 523], and between 521 and 463, 7 primes occur.
-
NextLowerTwinPrim[n_] := Block[{k = n + 6}, While[ !PrimeQ[k] || !PrimeQ[k + 2], k += 6]; k];p = 5; t = Table[0, {50}]; Do[ q = NextLowerTwinPrim[p]; d = (q - p)/6; If[d < 51 && t[[d]] == 0, t[[d]] = p; Print[{d, p}]]; p = q, {n, 1500}]; t (* Robert G. Wilson v, Oct 28 2005 *)
-
list(len) = {my(s = vector(len), c = 0, p1 = 5, q1 = 0, q2, d); forprime(p2 = 7, , if(p2 == p1 + 2, q2 = p1; if(q1 > 0, d = (q2 - q1)/6; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 04 2025
A052354
Least prime in A031928 (lesser of 10-twins) whose distance to the next 10-twin is 6*n.
Original entry on oeis.org
409, 691, 787, 547, 2053, 139, 4861, 283, 181, 25087, 337, 709, 2917, 829, 14197, 919, 3001, 33589, 2767, 421, 8221, 1879, 5179, 1249, 1471, 10141, 5011, 20533, 4483, 54091, 13249, 4663, 27883, 5869, 41443, 8599, 23311, 9049, 40699, 82591, 3109, 5323, 44917, 11971
Offset: 2
a(3) = 691 results in [691, 701, 709, 719] quadruple and [10, 8, 10] difference pattern without primes in the median gap.
a(11) = 25087 yields [25087, 25097, 25153, 25163] and [10, 56, 10] with 5 primes in the middle gap.
-
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 10] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 1; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[10000] (* Amiram Eldar, Mar 05 2025 *)~
-
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 10, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 1; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
A052358
Least prime in A031936 (lesser of 18-twins) whose distance to the next 18-twin is 2*n.
Original entry on oeis.org
20183, 20963, 14011, 26759, 7433, 45613, 4703, 21911, 26539, 18233, 6581, 4423, 7351, 37379, 55903, 25801, 4373, 6529, 35879, 119993, 22171, 12923, 10691, 52609, 14303, 20201, 16231, 21121, 103049, 17863, 6451, 34439, 50341, 76129, 3803, 23251, 15241, 14369
Offset: 9
a(11) = 14011 initiates prime quadruple [14011, 14029, 14033, 14051] and difference pattern [18, 4, 18].
a(15) = 4703 specifies prime quadruple [4703, 4721, 4133, 4151] which includes 2 primes (4723, 4729) in the center, and difference pattern [18, 28, 18].
-
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 18] // Flatten; pp = p[[i]]; dd = Differences[pp]/2 - 8; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[12000] (* Amiram Eldar, Mar 05 2025 *)
-
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 18, q2 = p1; if(q1 > 0, d = (q2 - q1)/2 - 8; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
a(21) corrected and missing terms inserted by
Sean A. Irvine, Nov 07 2021
A052359
Least prime in A031938 (lesser of primes differing by 20) whose distance to the next 20-twin is 6*n.
Original entry on oeis.org
46703, 37223, 65147, 20369, 63929, 71999, 11597, 11027, 99767, 93503, 5903, 14087, 115163, 24821, 104891, 24923, 11867, 53381, 65657, 93581, 99623, 11447, 18461, 126761, 32213, 27653, 72797, 5717, 154247, 54449, 27827, 10223, 56747, 18617, 13421, 10433, 8543, 60107
Offset: 4
For n = 4, a(4) = 46703 results in prime quadruple [46703, 46723, 46727, 46747] and difference pattern [20, 4, 20].
For n = 14, a(14) = 5903 yields prime quadruple [5903, 5923, 5987, 6007] with 4 primes in the medial gap, and difference pattern [20, 64, 20].
-
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 20] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 3; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[15000] (* Amiram Eldar, Mar 05 2025 *)
-
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 20, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 3; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
A052351
Least prime in A023200 (lesser of 4-twins) such that the distance to the next 4-twin is 6*n.
Original entry on oeis.org
7, 67, 19, 43, 163, 127, 397, 229, 769, 1489, 673, 9547, 1009, 1783, 1693, 2857, 11677, 23869, 499, 1093, 4003, 28657, 10459, 29383, 12487, 6043, 41647, 7039, 17029, 19207, 15073, 24247, 65839, 29629, 18583, 9883, 66697, 100699, 7243, 53923, 82237, 6217, 76249
Offset: 1
a(1) = 7 gives [7, 11,7+6 = 13, 17] with no primes between 11 and 13.
a(5) = 163 specifies [163, 167, 163+30 = 191, 193] with 4 primes between 167 and 193.
-
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 4] // Flatten; pp = p[[i]]; dd = Differences[pp]/6; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[10000] (* Amiram Eldar, Mar 04 2025 *)
-
list(len) = {my(s = vector(len), c = 0, p1 = 7, q1 = 0, q2, d); forprime(p2 = 11, , if(p2 == p1 + 4, q2 = p1; if(q1 > 0, d = (q2 - q1)/6; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 04 2025
A052353
Least prime in A031926 (lesser of 8-twins) whose distance to the next 8-twin is 6*n.
Original entry on oeis.org
389, 683, 719, 359, 1523, 2699, 401, 929, 2153, 1373, 2459, 2531, 1439, 1733, 8573, 2741, 4943, 9059, 5051, 983, 3491, 9173, 7529, 761, 1823, 1571, 3041, 5399, 1193, 2273, 491, 8171, 23549, 5189, 5813, 53189, 3221, 4349, 32789, 49823, 18749, 19001, 10979, 89, 19433
Offset: 2
a(2) = 389 specifies quadruple of [389, 397, 401, 409] with no prime between 397 and 401;
a(11) = 1373 gives quadruple of [1373, 1381, 1439, 1447] and [8, 58, 8] difference pattern with 6 primes in the central gap.
-
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 8] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 1; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[10000] (* Amiram Eldar, Mar 05 2025 *)
-
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 8, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 1; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
A052355
Least prime in A031930 (lesser of 12-twins) whose distance to the next 12-twin is 2*n.
Original entry on oeis.org
199, 7937, 3331, 3049, 1511, 1789, 28607, 7001, 20599, 2069, 18257, 46477, 1201, 15569, 1459, 467, 23087, 23041, 2399, 6101, 7057, 6607, 23801, 3931, 3499, 9029, 5197, 7841, 3191, 1237, 3259, 45767, 4801, 1811, 1709, 40867, 23497, 125441, 5419, 3989, 18077, 21787
Offset: 6
a(7) = 7937 results in [7937, 7949, 7951, 7963] quadruple and [12, 2, 12] difference pattern.
a(10) = 1511 specifies [1511, 1523, 1531, 1543] quadruple and [12, 8, 12] difference pattern without prime in the central gap.
-
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 12] // Flatten; pp = p[[i]]; dd = Differences[pp]/2 - 5; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[1q000] (* Amiram Eldar, Mar 05 2025 *)
-
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 12, q2 = p1; if(q1 > 0, d = (q2 - q1)/2 - 5; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
A052356
Least prime in A031932 (lesser of 14-twins) whose distance to the next 14-twin is 6*n.
Original entry on oeis.org
24749, 293, 3833, 21467, 23417, 14159, 3779, 18353, 773, 4817, 18959, 2939, 863, 7607, 3677, 8039, 5939, 2633, 7727, 13367, 51839, 51659, 7043, 5153, 8447, 26189, 1409, 113, 7853, 1847, 13859, 43223, 2423, 24533, 65867, 50909, 19763, 15173, 15527, 86477, 55229
Offset: 3
n = 4 results in [293,307,317,331] primes pattern and [14,24,14] difference pattern with 2 further primes (311 and 313) in the central gap.
-
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 14] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 2; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[10000] (* Amiram Eldar, Mar 05 2025 *)
-
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 14, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 2; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
A052357
Least prime in A031934 (lesser of 16-twins) whose distance to the next 16-twin is 6*n.
Original entry on oeis.org
3373, 32917, 2221, 13597, 3391, 37783, 4057, 13537, 8581, 41911, 6763, 7333, 10867, 12457, 1831, 2113, 14683, 37201, 6637, 17581, 25423, 37447, 11353, 11197, 20611, 22453, 57397, 1933, 50707, 37591, 11503, 39733, 2593, 122131, 22921, 9013, 17167, 10273, 9661
Offset: 3
a(9) = p = 4057 gives [4057, 4073, 4111, 4127] quadruple and [16, 38, 16] distance pattern with 4 primes in the medial gap.
-
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 16] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 2; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[12000] (* Amiram Eldar, Mar 05 2025 *)
-
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 16, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 2; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
Incorrect 43207 removed and more terms from
Sean A. Irvine, Nov 06 2021
Showing 1-9 of 9 results.
Comments