A052358 Least prime in A031936 (lesser of 18-twins) whose distance to the next 18-twin is 2*n.
20183, 20963, 14011, 26759, 7433, 45613, 4703, 21911, 26539, 18233, 6581, 4423, 7351, 37379, 55903, 25801, 4373, 6529, 35879, 119993, 22171, 12923, 10691, 52609, 14303, 20201, 16231, 21121, 103049, 17863, 6451, 34439, 50341, 76129, 3803, 23251, 15241, 14369
Offset: 9
Keywords
Examples
a(11) = 14011 initiates prime quadruple [14011, 14029, 14033, 14051] and difference pattern [18, 4, 18]. a(15) = 4703 specifies prime quadruple [4703, 4721, 4133, 4151] which includes 2 primes (4723, 4729) in the center, and difference pattern [18, 28, 18].
Links
- Amiram Eldar, Table of n, a(n) for n = 9..1008
Crossrefs
Programs
-
Mathematica
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 18] // Flatten; pp = p[[i]]; dd = Differences[pp]/2 - 8; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[12000] (* Amiram Eldar, Mar 05 2025 *)
-
PARI
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 18, q2 = p1; if(q1 > 0, d = (q2 - q1)/2 - 8; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
Extensions
a(21) corrected and missing terms inserted by Sean A. Irvine, Nov 07 2021
Name and offset corrected by Amiram Eldar, Mar 05 2025
Comments