cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052367 Number of nonnegative integer 5 X 5 matrices with sum of elements equal to n, under row and column permutations.

Original entry on oeis.org

1, 1, 4, 10, 33, 91, 277, 792, 2341, 6654, 18802, 51508, 138147, 359457, 910756, 2240915, 5365106, 12495406, 28353714, 62725603, 135469991, 285904968, 590347527, 1193817552, 2366907846, 4605225266, 8801576140, 16538061290
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Crossrefs

Formula

G.f.: - (x^86 - 3*x^85 + 9*x^84 + 12*x^83 + 59*x^82 + 116*x^81 + 452*x^80 + 736*x^79 + 2080*x^78 + 3344*x^77 + 7312*x^76 + 11708*x^75 + 21793*x^74 + 32869*x^73 + 55563*x^72 + 79389*x^71 + 123072*x^70 + 168321*x^69 + 243961*x^68 + 319938*x^67 + 438431*x^66 + 553731*x^65 + 724251*x^64 + 885383*x^63 + 1111989*x^62 + 1318149*x^61 + 1600579*x^60 + 1845557*x^59 +
2172889*x^58 + 2444070*x^57 + 2798839*x^56 + 3076865*x^55 + 3436180*x^54 + 3696058*x^53 + 4034590*x^52 + 4250683*x^51 + 4541020*x^50 + 4689359*x^49 + 4909073*x^48 + 4972196*x^47 + 5102026*x^46 + 5069013*x^45 + 5102464*x^44 + 4971700*x^43 + 4909948*x^42 + 4688757*x^41 + 4542211*x^40 + 4249809*x^39 + 4036170*x^38 + 3694857*x^37 + 3438025*x^36 +
3075494*x^35 + 2800760*x^34 + 2442552*x^33 + 2174743*x^32 + 1843864*x^31 + 1602482*x^30 + 1316113*x^29 + 1114023*x^28 + 883313*x^27 + 725930*x^26 + 551915*x^25 + 439662*x^24 + 318308*x^23 + 245205*x^22 + 166823*x^21 + 124009*x^20 + 78506*x^19 + 56071*x^18 + 32361*x^17 + 22208*x^16 + 11357*x^15 + 7673*x^14 + 3221*x^13 + 2294*x^12 + 684*x^11 + 594*x^10 + 59*x^9 + 133*x^8 + 21*x^7 + 18*x^6 - 2*x^4 - 3*x^3 + 9*x^2 - 5*x + 1) divided by (see next line)
((x^20 - 1)*(x^11 - x^10 + x^6 - x^5 + x - 1)*(x^7 - 2*x^6 + x^5 + x^4 - x^3 - x^2 + 2*x - 1)*(x^4 + x^3 + x^2 + x + 1)^4*(x^4 - x^3 + x^2 - x + 1)*(x^4 + x^2 + 1)*(x^2 + 1)^5*(x^2 + x + 1)^5*(x + 1)^11*(x - 1)^22).