cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052486 Achilles numbers - powerful but imperfect: if n = Product(p_i^e_i) then all e_i > 1 (i.e., powerful), but the highest common factor of the e_i is 1, i.e., not a perfect power.

Original entry on oeis.org

72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000, 5292, 5324, 5400, 5408, 5488, 6075
Offset: 1

Views

Author

Henry Bottomley, Mar 16 2000

Keywords

Comments

Number of terms < 10^n: 0, 1, 13, 60, 252, 916, 3158, 10553, 34561, 111891, 359340, 1148195, 3656246, 11616582, 36851965, ..., A118896(n) - A070428(n). - Robert G. Wilson v, Aug 11 2014
a(n) = (s(n))^2 * f(n), s(n) > 1, f(n) > 1, where s(n) is not a power of f(n), and f(n) is squarefree and gcd(s(n), f(n)) = f(n). - Daniel Forgues, Aug 11 2015

Examples

			a(3)=200 because 200=2^3*5^2, both 3 and 2 are greater than 1, and the highest common factor of 3 and 2 is 1.
Factorizations of a(1) to a(20):
    72 = 2^3  3^2,  108 = 2^2 3^3,  200 = 2^3 5^2,  288 = 2^5  3^2,
   392 = 2^3  7^2,  432 = 2^4 3^3,  500 = 2^2 5^3,  648 = 2^3  3^4,
   675 = 3^3  5^2,  800 = 2^5 5^2,  864 = 2^5 3^3,  968 = 2^3 11^2,
   972 = 2^2  3^5, 1125 = 3^2 5^3, 1152 = 2^7 3^2, 1323 = 3^3  7^2,
  1352 = 2^3 13^2, 1372 = 2^2 7^3, 1568 = 2^5 7^2, 1800 = 2^3  3^2 5^2.
Examples for a(n) = (s(n))^2 * f(n): (see above comment)
s(n) = 6,  6, 10, 12, 14, 12, 10, 18, 15, 20, 12, 22, 18, 15, 24, 21,
f(n) = 2,  3,  2,  2,  2,  3,  5,  2,  3,  2,  6,  2,  3,  5,  2,  3,
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
    select(filter,[$1..10000]); # Robert Israel, Aug 11 2014
  • Mathematica
    achillesQ[n_] := Block[{ls = Last /@ FactorInteger@n}, Min@ ls > 1 == GCD @@ ls]; Select[ Range@ 5500, achillesQ@# &] (* Robert G. Wilson v, Jun 10 2010 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && vecmin(f)>1 && gcd(f)==1 \\ Charles R Greathouse IV, Sep 18 2015, replacing code by M. F. Hasler, Sep 23 2010
    
  • Python
    from math import gcd
    from itertools import count, islice
    from sympy import factorint
    def A052486_gen(startvalue=1): # generator of terms >= startvalue
        return (n for n in count(max(startvalue,1)) if (lambda x: all(e > 1 for e in x) and gcd(*x) == 1)(factorint(n).values()))
    A052486_list = list(islice(A052486_gen(),20)) # Chai Wah Wu, Feb 19 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A052486(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x+1, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))
            return c
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = O(n^2). - Daniel Forgues, Aug 11 2015
a(n) = O(n^2 / log log n). - Daniel Forgues, Aug 12 2015
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} mu(k)*(1-zeta(k)) - 1 = A082695 - A072102 - 1 = 0.06913206841581433836... - Amiram Eldar, Oct 14 2020

Extensions

Example edited by Mac Coombe (mac.coombe(AT)gmail.com), Sep 18 2010
Name edited by M. F. Hasler, Jul 17 2019