cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A272714 Numbers n such that both n and n+1 are Achilles numbers (A052486).

Original entry on oeis.org

5425069447, 11968683934831, 28821995554247, 48689748233307
Offset: 1

Views

Author

Felix Fröhlich, May 12 2016

Keywords

Comments

Any term of the sequence is also a term of A227297, but the converse is not always true. The smallest term of A227297 where the converse fails is A227297(1) = 12167. Do any other such numbers exist?

Examples

			5425069447 = 7^3 * 41^2 * 97^2 and 5425069448 = 2^3 * 26041^2. Since every prime factor of 5425069447 and 5425069448 is repeated, both numbers are Achilles numbers (A052486) and since the two numbers differ by 1, i.e., the value of A247246 at the index of 5425069447 in A052486 is 1, 5425069447 is a term of the sequence.
		

Crossrefs

Programs

  • PARI
    is(n) = vecmin(factor(n)[, 2]) > 1 && vecmin(factor(n+1)[, 2]) > 1 && !ispower(n) && !ispower(n+1)

A358514 a(n) is the smallest number with exactly n divisors that are Achilles numbers (A052486).

Original entry on oeis.org

1, 72, 216, 432, 1296, 864, 7200, 2592, 6912, 10800, 7776, 15552, 27000, 41472, 21600, 31104, 884736, 54000, 64800, 129600, 86400, 248832, 172800, 162000, 5308416, 108000, 194400, 216000, 518400, 388800, 810000, 1323000, 1058400, 1382400, 324000, 432000, 2073600
Offset: 0

Views

Author

Marius A. Burtea, Dec 04 2022

Keywords

Examples

			1 has no Achilles number divisors, so a(0) = 1.
72 = A052486(1), so a(1) = 72.
216 has divisors 72 = A052486(1) and 108 = A052486(2), and there are no smaller numbers that have exactly two divisors that are Achilles numbers, so a(2) = 216.
		

Crossrefs

Programs

  • Magma
    ah:=func; a:=[]; for n in [0..37] do k:=1; while #[d:d in Divisors(k)| ah(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
    
  • PARI
    is(n) = my(f=factor(n)[, 2]); n>9 && vecmin(f)>1 && gcd(f)==1; \\ A052486
    a(n) = my(k=1); while (sumdiv(k, d, is(d)) != n, k++); k; \\ Michel Marcus, Dec 13 2022

A007916 Numbers that are not perfect powers.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83
Offset: 1

Views

Author

R. Muller

Keywords

Comments

From Gus Wiseman, Oct 23 2016: (Start)
There is a 1-to-1 correspondence between integers N >= 2 and sequences a(x_1),a(x_2),...,a(x_k) of terms from this sequence. Every N >= 2 can be written uniquely as a "power tower"
N = a(x_1)^a(x_2)^a(x_3)^...^a(x_k),
where the exponents are to be nested from the right.
Proof: If N is not a perfect power then N = a(x) for some x, and we are done. Otherwise, write N = a(x_1)^M for some M >=2, and repeat the process. QED
Of course, prime numbers also have distinct power towers (see A164336). (End)
These numbers can be computed with a modified Sieve of Eratosthenes: (1) start at n=2; (2) if n is not crossed out, then append n to the sequence and cross out all powers of n; (3) set n = n+1 and go to step 2. - Sam Alexander, Dec 15 2003
These are all numbers such that the multiplicities of the prime factors have no common divisor. The first number in the sequence whose prime multiplicities are not coprime is 180 = 2 * 2 * 3 * 3 * 5. Mathematica: CoprimeQ[2,2,1]->False. - Gus Wiseman, Jan 14 2017

Examples

			Example of the power tower factorizations for the first nine positive integers: 1=1, 2=a(1), 3=a(2), 4=a(1)^a(1), 5=a(3), 6=a(4), 7=a(5), 8=a(1)^a(2), 9=a(2)^a(1). - _Gus Wiseman_, Oct 20 2016
		

Crossrefs

Complement of A001597. Union of A052485 and A052486.
Cf. A153158 (squares of these numbers).
See A277562, A277564, A277576, A277615 for more about the power towers.
A278029 is a left inverse.
Cf. A052409.

Programs

  • Haskell
    a007916 n = a007916_list !! (n-1)
    a007916_list = filter ((== 1) . foldl1 gcd . a124010_row) [2..]
    -- Reinhard Zumkeller, Apr 13 2012
    
  • Magma
    [n : n in [2..1000] | not IsPower(n) ];
    
  • Maple
    See link.
  • Mathematica
    a = {}; Do[If[Apply[GCD, Transpose[FactorInteger[n]][[2]]] == 1, a = Append[a, n]], {n, 2, 200}];
    Select[Range[2,200],GCD@@FactorInteger[#][[All,-1]]===1&] (* Michael De Vlieger, Oct 21 2016. Corrected by Gus Wiseman, Jan 14 2017 *)
  • PARI
    is(n)=!ispower(n)&&n>1 \\ Charles R Greathouse IV, Jul 01 2013
    
  • Python
    from sympy import mobius, integer_nthroot
    def A007916(n):
        def f(x): return int(n+1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 13 2024

Formula

A075802(a(n)) = 0. - Reinhard Zumkeller, Mar 19 2009
Gcd(exponents in prime factorization of a(n)) = 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n. - Charles R Greathouse IV, Jul 01 2013
A052409(a(n)) = 1. - Ridouane Oudra, Nov 23 2024

Extensions

More terms from Henry Bottomley, Sep 12 2000
Edited by Charles R Greathouse IV, Mar 18 2010
Further edited by N. J. A. Sloane, Nov 09 2016

A131605 Perfect powers of nonprimes (m^k where m is a nonprime positive integer and k >= 2).

Original entry on oeis.org

1, 36, 100, 144, 196, 216, 225, 324, 400, 441, 484, 576, 676, 784, 900, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1728, 1764, 1936, 2025, 2116, 2304, 2500, 2601, 2704, 2744, 2916, 3025, 3136, 3249, 3364, 3375, 3600, 3844, 3969, 4225, 4356, 4624
Offset: 1

Views

Author

Daniel Forgues, May 27 2008

Keywords

Comments

Although 1 is a square, is a cube, and so on..., 1 is sometimes excluded from perfect powers since it is not a well-defined power of 1 (1 = 1^k for any k in [2, 3, 4, 5, ...])
From Michael De Vlieger, Aug 11 2025: (Start)
This sequence is A001597 \ A246547, i.e., perfect powers without proper prime powers.
Union of {1} with the intersection of A001597 and A126706, where A126706 is the sequence of numbers that are neither prime powers nor squarefree.
Union of {1} and A286708 \ A052486, i.e., powerful numbers that are not prime powers, without Achilles numbers, but including the empty product. (End)

Crossrefs

Programs

  • Mathematica
    With[{nn = 2^20}, {1}~Join~Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], And[Length[#2] > 1, GCD @@ #2 > 1] & @@ {#, FactorInteger[#][[;; , -1]]} &] ] (* Michael De Vlieger, Aug 11 2025 *)
  • PARI
    isok(n) = if (n == 1, return (1), return (ispower(n, ,&np) && (! isprime(np)))); \\ Michel Marcus, Jun 12 2013
    
  • Python
    from sympy import mobius, integer_nthroot, primepi
    def A131605(n):
        def f(x): return int(n-2+x+sum(mobius(k)*((a:=integer_nthroot(x,k)[0])-1)+primepi(a) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 1 + A072102 - A136141 = 1.10130769935514973882... . - Amiram Eldar, Aug 15 2025

A112526 Characteristic function for powerful numbers.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

A signed multiplicative variant is defined by b(n) = a(n)*mu(n) with mu = A008683, such that b(p^e)=0 if e=1 and b(p^e)= -1 if e>1. This has Dirichlet series Sum_{n>=1} b(n)/n = A005596 and Sum_{n>=1} b(n)/n^2 = A065471. - R. J. Mathar, Apr 04 2011

Examples

			a(72) = 1 because 72 = 2^3*3^2 has all exponents > 1.
		

Crossrefs

Differs from characteristic function of perfect powers A075802 at Achilles numbers A052486.
Cf. A001694 (powerful numbers), A124010, A001221, A027746.

Programs

  • Haskell
    a112526 1 = 1
    a112526 n = fromEnum $ (> 1) $ minimum $ a124010_row n
    -- Reinhard Zumkeller, Jun 03 2015, Sep 16 2011
    
  • Mathematica
    cfpn[n_]:=If[n==1||Min[Transpose[FactorInteger[n]][[2]]]>1,1,0]; Array[ cfpn,120] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X^3)/(1-X^2))[n], ", ")) \\ Vaclav Kotesovec, Jul 15 2022
    
  • PARI
    a(n) = ispowerful(n); \\ Amiram Eldar, Jul 02 2025
    
  • Python
    from sympy import factorint
    def A112526(n): return int(all(e>1 for e in factorint(n).values())) # Chai Wah Wu, Sep 15 2024

Formula

Multiplicative with a(p^e) = 1 - 0^(e-1), e > 0 and p prime.
Dirichlet g.f.: zeta(2*s)*zeta(3*s)/zeta(6*s), e.g., A082695 at s=1.
a(n) * A008966(n) = A063524(n). - Reinhard Zumkeller, Sep 16 2011
a(n) = {m: Min{A124010(m,k): k=1..A001221(m)} > 1}. - Reinhard Zumkeller, Jun 03 2015
Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)/zeta(3) + 6*zeta(2/3)*n^(1/3)/Pi^2. - Vaclav Kotesovec, Feb 08 2019
a(n) = Sum_{d|n} A005361(d)*A008683(n/d). - Ridouane Oudra, Jul 03 2025

A143610 Numbers of the form p^2 * q^3, where p,q are distinct primes.

Original entry on oeis.org

72, 108, 200, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 2312, 2888, 3087, 3267, 4232, 4563, 5324, 6125, 6728, 7688, 7803, 8575, 8788, 9747, 10952, 11979, 13448, 14283, 14792, 15125, 17672, 19652, 19773, 21125, 22472, 22707, 25947, 27436
Offset: 1

Views

Author

M. F. Hasler, Aug 27 2008

Keywords

Comments

Also: numbers with prime signature {3,2}.
This is a subsequence of A114128. [Hasler]
Every a(n) is an Achilles number (A052486). They are minimal, meaning no proper divisor is an Achilles number. - Antonio Roldán, Dec 27 2011

Examples

			The first three terms of this sequence are 3^2 * 2^3 = 72, 2^2 * 3^3 = 108, 5^2 * 2^3 = 200.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sort[Last/@FactorInteger[n]] == {2, 3}; Select[Range[30000], f] (* Vladimir Joseph Stephan Orlovsky, Oct 09 2009 *)
  • PARI
    for(n=1, 10^5, omega(n)==2 || next; vecsort(factor(n)[,2])==[2,3]~ && print1(n","))
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, (lim\4)^(1/3), t=p^3;forprime(q=2, sqrt(lim\t), if(p==q, next);listput(v,t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A143610(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**3)) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3) - P(5) = A085548 * A085541 - A085965 = 0.043280..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A294068 Number of factorizations of n using perfect powers (elements of A001597) other than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2018

Keywords

Examples

			The a(1152) = 7 factorizations are (4*4*8*9), (4*8*36), (4*9*32), (8*9*16), (8*144), (9*128), (32*36).
		

Crossrefs

Programs

  • Maple
    ispp:= proc(n) local F;
      F:= ifactors(n)[2];
      igcd(op(map(t -> t[2],F)))>1
    end proc:
    f:= proc(n) local F, np, Q;
      F:= map(t -> t[2], ifactors(n)[2]);
      np:= mul(ithprime(i)^F[i],i=1..nops(F));
      Q:= select(ispp, numtheory:-divisors(np));
      G(Q,np)
    end proc:
    G:= proc(Q,n) option remember; local q,t,k;
        if not numtheory:-factorset(n) subset `union`(seq(numtheory:-factorset(q),q=Q)) then return 0 fi;
        q:= Q[1]; t:= 0;
        for k from 0 while n mod q^k = 0 do
          t:= t + procname(Q[2..-1],n/q^k)
        od;
        t
    end proc:
    G({},1):= 1:
    map(f, [$1..200]); # Robert Israel, May 06 2018
  • Mathematica
    ppQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]>1];
    facsp[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsp[n/d],Min@@#>=d&]],{d,Select[Divisors[n],ppQ]}]];
    Table[Length[facsp[n]],{n,100}]

A212171 Prime signature of n (nonincreasing version): row n of table lists positive exponents in canonical prime factorization of n, in nonincreasing order.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 1
Offset: 2

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A001221(n).
The multiset of positive exponents in n's prime factorization completely determines a(n) for a host of OEIS sequences, including several "core" sequences. Of those not cross-referenced here or in A212172, many can be found by searching the database for A025487.
(Note: Differing opinions may exist about whether the prime signature of n should be defined as this multiset itself, or as a symbol or collection of symbols that identify or "signify" this multiset. The definition of this sequence is designed to be compatible with either view, as are the original comments. When n >= 2, the customary ways to signify the multiset of exponents in n's prime factorization are to list the constituent exponents in either nonincreasing or nondecreasing order; this table gives the nonincreasing version.)
Table lists exponents in the order in which they appear in the prime factorization of a member of A025487. This ordering is common in database comments (e.g., A008966).
Each possible multiset of an integer's positive prime factorization exponents corresponds to a unique partition that contains the same elements (cf. A000041). This includes the multiset of 1's positive exponents, { } (the empty multiset), which corresponds to the partition of 0.
Differs from A124010 from a(23) on, corresponding to the factorization of 18 = 2^1*3^2 which is here listed as row 18 = [2, 1], but as [1, 2] (in the order of the prime factors) in A124010 and also in A118914 which lists the prime signatures in nondecreasing order (so that row 12 = 2^2*3^1 is also [1, 2]). - M. F. Hasler, Apr 08 2022

Examples

			First rows of table read:
  1;
  1;
  2;
  1;
  1,1;
  1;
  3;
  2;
  1,1;
  1;
  2,1;
  ...
The multiset of positive exponents in the prime factorization of 6 = 2*3 is {1,1} (1s are often left implicit as exponents). The prime signature of 6 is therefore {1,1}.
12 = 2^2*3 has positive exponents 2 and 1 in its prime factorization, as does 18 = 2*3^2. Rows 12 and 18 of the table both read {2,1}.
		

Crossrefs

Cf. A025487, A001221 (row lengths), A001222 (row sums). A118914 gives the nondecreasing version. A124010 lists exponents in n's prime factorization in natural order, with A124010(1) = 0.
A212172 cross-references over 20 sequences that depend solely on n's prime exponents >= 2, including the "core" sequence A000688. Other sequences determined by the exponents in the prime factorization of n include:
Additive: A001221, A001222, A056169.
A highly incomplete selection of sequences, each definable by the set of prime signatures possessed by its members: A000040, A000290, A000578, A000583, A000961, A001248, A001358, A001597, A001694, A002808, A004709, A005117, A006881, A013929, A030059, A030229, A052486.

Programs

  • Magma
    &cat[Reverse(Sort([pe[2]:pe in Factorisation(n)])):n in[1..76]]; // Jason Kimberley, Jun 13 2012
    
  • PARI
    apply( {A212171_row(n)=vecsort(factor(n)[,2]~,,4)}, [1..40])\\ M. F. Hasler, Apr 19 2022

Formula

Row n of A118914, reversed.
Row n of A124010 for n > 1, with exponents sorted in nonincreasing order. Equivalently, row A046523(n) of A124010 for n > 1.

A072414 Non-Achilles numbers for which LCM of the exponents in the prime factorization of n is not equal to the maximum of the same exponents.

Original entry on oeis.org

360, 504, 540, 600, 756, 792, 936, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1440, 1500, 1656, 1836, 1960, 2016, 2052, 2088, 2160, 2200, 2232, 2250, 2400, 2484, 2520, 2600, 2646, 2664, 2904, 2952, 3024, 3096, 3132, 3168, 3240, 3348, 3384, 3400, 3500
Offset: 1

Views

Author

Labos Elemer, Jun 17 2002

Keywords

Comments

Most members of this sequence fail to be Achilles numbers because they have at least one prime factor with multiplicity 1. There are also numbers in the sequence that fail to be Achilles numbers because they are perfect powers: these are precisely the proper powers of members of A072412, so the smallest such is 5184 = 2^6*3^4 = 72^2. - Franklin T. Adams-Watters, Oct 09 2006

Examples

			m = 504 = 2*2*2*3*3*7: exponent-set = E = {3,2,1}, max(E) = 3 < lcm(E) = 6, gcd(E) = min(E) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 3500, And[LCM @@ # != Max@ #, GCD @@ # == Min@ # == 1] &[FactorInteger[#][[All, -1]] ] &] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); n>9 && lcm(f)!=vecmax(f) && (#f==1 || vecmin(f)<2) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A051903(a(n)) is not equal A072411(a(n)) but the numbers are not in A052486.

A377854 Achilles numbers whose squarefree kernel is a primorial.

Original entry on oeis.org

72, 108, 288, 432, 648, 864, 972, 1152, 1800, 1944, 2592, 2700, 3456, 3888, 4500, 4608, 5400, 6912, 7200, 8748, 9000, 10368, 10800, 13500, 15552, 16200, 17496, 18000, 18432, 21600, 23328, 24300, 27648, 28800, 31104, 34992, 36000, 40500, 41472, 43200, 45000, 48600
Offset: 1

Views

Author

Michael De Vlieger, Nov 16 2024

Keywords

Comments

Numbers whose squarefree kernel is a primorial that are powerful but not a perfect power.

Examples

			Prime power decomposition of the first 12 terms:
   a(1) =   72 = 2^3 * 3^2
   a(2) =  108 = 2^2 * 3^3
   a(3) =  288 = 2^5 * 3^2
   a(4) =  432 = 2^4 * 3^3
   a(5) =  648 = 2^3 * 3^4
   a(6) =  864 = 2^5 * 3^3
   a(7) =  972 = 2^2 * 3^5
   a(8) = 1152 = 2^7 * 3^2
   a(9) = 1800 = 2^3 * 3^2 * 5^2
  a(10) = 1944 = 2^3 * 3^5
  a(11) = 2592 = 2^5 * 3^4
  a(12) = 2700 = 2^2 * 3^3 * 5^2
		

Crossrefs

Programs

  • Mathematica
    (* First load function f in the link, then: *)
    Select[Rest@ Union@ Flatten@ f[10],
     And[Divisible[#, Apply[Times, #2[[All, 1]] ]^2],
       GCD @@ #2[[All, -1]] == 1] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A286708 \ A001597 and A055932.
Intersection of A052486 and A055932.
Proper subset of A369374.
Superset of A378002.
Showing 1-10 of 31 results. Next