A052491 Smallest "inconsummate number" in base n: smallest number such that in base n, no number is this multiple of the sum of its digits.
13, 17, 29, 16, 27, 30, 42, 46, 62, 68, 86, 92, 114, 122, 147, 154, 182, 192, 222, 232, 266, 278, 314, 326, 367, 380, 422, 436, 482, 498, 546, 562, 614, 632, 688, 704, 762, 782, 842, 862, 926, 948, 1014, 1036, 1107, 1130, 1202, 1226, 1302, 1328, 1406, 1432
Offset: 2
Examples
a(10) = 62, from A003635.
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..174
Programs
-
Mathematica
Do[n = 1; While[k = n; While[ Apply[ Plus, IntegerDigits[k, b] ]*n != k && k < 100n, k += n ]; k != 100n, n++ ]; Print[n], {b, 2, 54} ]
-
Python
from itertools import count, combinations_with_replacement from sympy.ntheory import digits def A052491(n): for k in count(1): for l in count(1): if (n-1)*l*k < n**(l-1): return k for d in combinations_with_replacement(range(n),l): if (s:=sum(d)) > 0 and sorted(digits(s*k,n)[1:]) == list(d): break else: continue break # Chai Wah Wu, May 09 2023
Extensions
Corrected and extended by David Radcliffe, Jan 08 2001
More terms from David W. Wilson, Jan 10 2001