cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052501 Number of permutations sigma such that sigma^5=Id; degree-n permutations of order dividing 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 25, 145, 505, 1345, 3025, 78625, 809425, 4809025, 20787625, 72696625, 1961583625, 28478346625, 238536558625, 1425925698625, 6764765838625, 189239120970625, 3500701266525625, 37764092547420625, 288099608198025625
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000; encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The number of degree-n permutations of order exactly p (where p is prime) satisfies a(n) = a(n-1) + (1 + a(n-p))*(n-1)!/(n-p)! with a(n)=0 if p>n. Also a(n) = Sum_{j=1..floor(n/p)} (n!/(j!*(n-p*j)!*(p^j))).
These are the telephone numbers T^(5)n of [Artioli et al., p. 7]. - _Eric M. Schmidt, Oct 12 2017

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^5/5) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Maple
    spec := [S,{S=Set(Union(Cycle(Z,card=1),Cycle(Z,card=5)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    max = 30; CoefficientList[ Series[ Exp[x + x^5/5], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Feb 15 2012, after e.g.f. *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^5/5) )) \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x + x^5/5), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^5/5).
a(n+5) = a(n+4) + (24 +50*n +35*n^2 +10*n^3 +n^4)*a(n), with a(0)= ... = a(4) = 1.
a(n) = a(n-1) + a(n-5)*(n-1)!/(n-5)!.
a(n) = Sum_{j = 0..floor(n/5)} n!/(5^j * j! * (n-5*j)!).
a(n) = A059593(n) + 1.