cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052545 Expansion of (1-x)^2/(1-3*x+x^3).

Original entry on oeis.org

1, 1, 4, 11, 32, 92, 265, 763, 2197, 6326, 18215, 52448, 151018, 434839, 1252069, 3605189, 10380728, 29890115, 86065156, 247814740, 713554105, 2054597159, 5915976737, 17034376106, 49048531159, 141229616740, 406654474114
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

(1, 4, 11, 32, ...) = INVERT transform of (1, 3, 4, 5, 6, 7, ...).

Crossrefs

Cf. A215448. First differences of A052536.

Programs

  • GAP
    a:=[1,1,4];; for n in [4..40] do a[n]:=3*a[n-1]-a[n-3]; od; a; # G. C. Greubel, May 08 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)^2/(1-3*x+x^3) )); // G. C. Greubel, May 08 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Z)),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{3,0,-1}, {1,1,4}, 40] (* G. C. Greubel, May 08 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)^2/(1-3*x+x^3)) \\ G. C. Greubel, May 08 2019
    
  • Python
    TOP = 33
    a = [1]*TOP
    a[2]=4
    for n in range(3,TOP):
        print(a[n-3], end=',')
        a[n] = 3*a[n-1] - a[n-3]
    # Alex Ratushnyak, Aug 10 2012
    
  • Sage
    ((1-x)^2/(1-3*x+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
    

Formula

G.f.: (1-x)^2/(1-3*x+x^3).
a(n) = 3*a(n-1) - a(n-3), with a(0)=a(1)=1, a(2)=4.
a(n) = Sum_{alpha = RootOf(1-3*x+x^3)} (-1/9 * (-1+2*alpha^2-2*alpha) * alpha^(-1-n)).
a(n) = A076264(n) - 2*A076264(n-1) + A076264(n-2). - R. J. Mathar, Nov 28 2011