A052581 E.g.f. (1-x)/(1-x-x^4).
1, 0, 0, 0, 24, 120, 720, 5040, 80640, 1088640, 14515200, 199584000, 3353011200, 62270208000, 1220496076800, 24845812992000, 543992537088000, 12804747411456000, 320118685286400000, 8393511928209408000
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 525
Programs
-
Maple
spec := [S,{S=Sequence(Prod(Z,Z,Z,Z,Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
With[{nn=20},CoefficientList[Series[(1-x)/(1-x-x^4),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 27 2016 *)
Formula
E.g.f.: (-1+x)/(-1+x^4+x)
Recurrence: {a(1)=0, a(0)=1, a(2)=0, a(3)=0, (-n^4-35*n^2-50*n-24-10*n^3)*a(n) +(-n-4)*a(n+3) +a(n+4)=0}
Sum(-1/283*(9+12*_alpha^3+16*_alpha^2-73*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z^4+_Z))*n!
a(n)= n!*A017898(n). - R. J. Mathar, Nov 27 2011
Comments