A052587 Expansion of e.g.f. x^2*(1-x)/(1-2*x).
0, 0, 2, 6, 48, 480, 5760, 80640, 1290240, 23224320, 464486400, 10218700800, 245248819200, 6376469299200, 178541140377600, 5356234211328000, 171399494762496000, 5827582821924864000, 209792981589295104000
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 532
Crossrefs
Programs
-
Maple
spec := [S,{S=Prod(Z,Z,Sequence(Prod(Z,Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
With[{nn=20},CoefficientList[Series[x^2 (1-x)/(1-2x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 14 2025 *)
-
PARI
apply( {A052587(n)=n!<<(n-3)+(n==2)}, [0..19]) \\ M. F. Hasler, Nov 10 2024
Formula
E.g.f.: x^2*(-1+x)/(-1+2*x).
Recurrence: a(0) = a(1) = 0, a(2) = 2, a(3) = 6, a(n+1) = 2*(n+1)*a(n) for n > 3.
a(n) = 1/8*2^n*n!, n > 2.
a(n) = A051578(n-2) = (2*n)!!/4!! for n > 2. - M. F. Hasler, Nov 10 2024
Comments