A052655 a(2) = 6, otherwise a(n) = n*n!.
0, 1, 6, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000
Offset: 0
Examples
a(2)=6 because there are 6 (0,1)-matrices with nonzero determinant having permanent=1. See example in A089482. The (0,1)-matrix with maximal permanent=2 ((1,1),(1,1)) has det=0.
Links
- Richard A. Brualdi, John L. Goldwasser, T. S. Michael, Maximum permanents of matrices of zeros and ones, J. Combin. Theory Ser. A 47 (1988), 207-245.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 602
Crossrefs
Programs
-
Maple
spec := [S,{S=Prod(Z,Union(Z,Prod(Sequence(Z),Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Join[{0,1,6},Table[n*n!,{n,3,20}]] (* Harvey P. Dale, Apr 20 2012 *)
Formula
E.g.f.: x*(-2*x^2+x^3+x+1)/(-1+x)^2.
Comments