cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052702 Expansion of (1/2)*(1/x^2 - 1/x)*(1-x-sqrt(1-2*x+x^2-4*x^3)) - x.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 6, 13, 26, 52, 108, 226, 472, 993, 2106, 4485, 9586, 20576, 44332, 95814, 207688, 451438, 983736, 2148618, 4702976, 10314672, 22664452, 49887084, 109985772, 242854669, 537004218, 1189032613, 2636096922, 5851266616, 13002628132, 28925389870, 64412505472, 143576017410
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

From Paul Barry, May 24 2009: (Start)
Hankel transform of A052702 is A160705. Hankel transform of A052702(n+1) is A160706.
Hankel transform of A052702(n+2) is -A131531(n+1). Hankel transform of A052702(n+3) is A160706(n+5).
Hankel transform of A052702(n+4) is A160705(n+5). (End)
For n > 1, number of Dyck (n-1)-paths with each descent length one greater or one less than the preceding ascent length. - David Scambler, May 11 2012

Crossrefs

Cf. A023431.

Programs

  • Maple
    spec := [S,{B=Prod(C,Z),S=Prod(B,B),C=Union(S,B,Z)},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    a[n_] := Sum[Binomial[n-k-2, 2k-1] CatalanNumber[k], {k, 0, n-2}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 11 2022, after Paul Barry *)
  • PARI
    x='x+O('x^66);
    s='a0+(1-2*x+x^2-2*x^3-(1-x)*sqrt(1-2*x+x^2-4*x^3))/(2*x^2);
    v=Vec(s);  v[1]-='a0;  v
    /* Joerg Arndt, May 11 2012 */

Formula

Recurrence: {a(1)=0, a(2)=0, a(4)=1, a(3)=0, a(6)=3, a(7)=6, a(5)=2, (-2+4*n)*a(n)+(-7-5*n)*a(n+1)+(8+3*n)*a(n+2)+(-13-3*n)*a(n+3)+(n+6)*a(n+4)}.
From Paul Barry, May 24 2009: (Start)
G.f.: (1-2*x+x^2-2*x^3-(1-x)*sqrt(1-2*x+x^2-4*x^3))/(2*x^2).
a(n+1) = Sum_{k=0..n-1} C(n-k-1,2k-1)*A000108(k). (End)
a(n) = A023431(n-1)-A023431(n-2). - R. J. Mathar, Jan 13 2025

Extensions

More terms from Joerg Arndt, May 11 2012