cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A160705 Hankel transform of A052702.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, -1, -4, -4, 5, 9, 9, -14, -16, -16, 30, 25, 25, -55, -36, -36, 91, 49, 49, -140, -64, -64, 204, 81, 81, -285, -100, -100, 385, 121, 121, -506, -144, -144, 650, 169, 169, -819, -196, -196, 1015, 225, 225, -1240, -256, -256
Offset: 0

Views

Author

Paul Barry, May 24 2009

Keywords

Comments

a(n+5) is the Hankel transform of A052702(n+4).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))); // G. C. Greubel, May 02 2018
  • Mathematica
    LinearRecurrence[{0,0,-4,0,0,-6,0,0,-4,0,0,-1}, {0,0,0,0,1,1,-1,-4,-4,5,9,9}, 50] (* G. C. Greubel, May 02 2018 *)
  • PARI
    x='x+O('x^50); concat([0,0,0,0], Vec(x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ))) \\ G. C. Greubel, May 02 2018
    

Formula

G.f.: x^4*(1-x)*(1+x+x^2)*(x^4+x^3-x^2+x+1)/( (1+x)^4*(x^2-x+1)^4 ).
a(n) = -4*a(n-3) -6*a(n-6) -4*a(n-9) -a(n-12).

A160706 Hankel transform of A052702(n+1).

Original entry on oeis.org

0, 0, 0, 1, 0, -1, -2, 0, 2, 3, 0, -3, -4, 0, 4, 5, 0, -5, -6, 0, 6, 7, 0, -7, -8, 0, 8, 9, 0, -9, -10, 0, 10, 11, 0, -11, -12, 0, 12, 13, 0, -13, -14, 0, 14, 15, 0, -15, -16, 0, 16, 17, 0, -17, -18, 0, 18, 19, 0, -19, -20
Offset: 0

Views

Author

Paul Barry, May 24 2009

Keywords

Comments

a(n+5) is the Hankel transform of A052702(n+3).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0,0,0] cat Coefficients(R!(x^3*(1-x^2)/(1 + x^3)^2));  // G. C. Greubel, May 02 2018
  • Mathematica
    LinearRecurrence[{1, -1, -1, 1, -1}, {0, 0, 0, 1, 0}, 100] (* G. C. Greubel, May 02 2018 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(x^3*(1-x^2)/(1 + x^3)^2)) \\ G. C. Greubel, May 02 2018
    

Formula

G.f.: x^3*(1-x^2)/(1 + x^3)^2.

A361229 G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^2.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 3, 4, 7, 14, 27, 48, 84, 152, 284, 532, 987, 1826, 3401, 6384, 12024, 22656, 42728, 80780, 153151, 290970, 553601, 1054688, 2012373, 3845646, 7359345, 14100692, 27048061, 51941850, 99855389, 192163904, 370159216, 713672568, 1377168108, 2659729380
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A023426.

Programs

  • Maple
    A361229 := proc(n)
        add(binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1),k=0..floor(n/4)) ;
    end proc:
    seq(A361229(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-2*k-1, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1-x) / (1-x+sqrt((1-x)^2-4*x^4)).
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1).
D-finite with recurrence (n+4)*a(n) +(-3*n-7)*a(n-1) +(3*n+2)*a(n-2) +(-n+1)*a(n-3) +4*(-n+2)*a(n-4) +4*(n-4)*a(n-5)=0. - R. J. Mathar, Dec 04 2023

A052724 A simple context-free grammar in a labeled universe: a(n) = A052743(n)-A052723(n), n>1.

Original entry on oeis.org

0, 0, 0, 0, 24, 240, 2160, 30240, 524160, 9434880, 188697600, 4311014400, 108254361600, 2939153817600, 86568043161600, 2753962219008000, 93838712647680000, 3409619685728256000, 131735241369059328000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Prod(Z,C),C=Union(B,S,Z),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(n!*add(binomial(n-k-2, 2*k-1)*binomial(2*k, k)/(k+1), k=0..n-2), n=0..20);  # Mark van Hoeij, May 12 2013

Formula

E.g.f.: (1/2)/x^2*(1-x-(1-2*x+x^2-4*x^3)^(1/2))-(1/2)/x*(1-x-(1-2*x+x^2-4*x^3)^(1/2))-x
Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, a(6)=2160, a(7)=30240, (38*n^4+120*n^3-48-4*n+130*n^2+4*n^5)*a(n) +(-193*n^2-52*n^3-302*n-5*n^4-168)*a(n+1) +(96+29*n^2+92*n+3*n^3)*a(n+2) +(-52-3*n^2-25*n)*a(n+3) +(n+6)*a(n+4)=0, a(5)=240}
a(n) = n!*A052702(n). - R. J. Mathar, Oct 18 2013
Showing 1-4 of 4 results.