cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052712 Expansion of e.g.f. (1 + 4*x - sqrt(1-8*x))/8.

Original entry on oeis.org

0, 1, 2, 24, 480, 13440, 483840, 21288960, 1107025920, 66421555200, 4516665753600, 343266597273600, 28834394170982400, 2652764263730380800, 265276426373038080000, 28649854048288112640000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Also the number of random walk labelings of the 2 X (n-1) king's graph, for n > 1. - Sela Fried, Apr 14 2023

Crossrefs

Programs

  • Maple
    spec := [S,{B=Prod(C,C),C=Union(B,S),S=Union(B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[n!*2^(n-2)*CatalanNumber[n-1] +Boole[n==1]/2 +Boole[n==0]/4, {n,0,30}] (* G. C. Greubel, May 30 2022 *)
  • SageMath
    [2^(n-2)*factorial(n)*catalan_number(n-1) +bool(n==0)/8 +bool(n==1)/2 for n in (0..30)] # G. C. Greubel, May 30 2022

Formula

D-finite with recurrence: a(0) = 0, a(1)=1, a(2)=2, a(n+1) = 4*(2*n-1)*a(n).
a(n) = 8^(n+1)*Gamma(n+3/2)/sqrt(Pi).
a(n) = n!*A003645(n-2), n>1. - R. J. Mathar, Oct 18 2013
G.f.: (1 + 4*x - 2F0([1,-1/2], [], 8*x))/8. - R. J. Mathar, Jan 25 2020