A052719 Expansion of e.g.f. (1 - 2*x*sqrt(1-4*x))*(1 - sqrt(1-4*x))/4.
0, 0, 0, 6, 72, 1080, 20160, 453600, 11975040, 363242880, 12454041600, 476367091200, 20113277184000, 929233405900800, 46630621823385600, 2525825348766720000, 146886458743664640000, 9127944221927731200000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 675
Crossrefs
Programs
-
Maple
spec := [S,{B=Union(Z,C),C=Prod(B,B),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Table[If[n<2, 0, 3*(n-2)*(n-1)!*CatalanNumber[n-2]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
SageMath
[0,0]+[3*(n-2)*factorial(n-1)*catalan_number(n-2) for n in (2..30)] # G. C. Greubel, May 28 2022
Formula
D-finite with recurrence: a(1)=0, a(2)=0, a(3)=6, a(n+2) = (2 + 5*n)*a(n+1) + (6 + 2*n - 4*n^2)*a(n)
a(n) = n!*A000245(n-2). - R. J. Mathar, Oct 26 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 6*x^3*Hypergeometric2F0([2, 3/2], [], 4*x).
E.g.f.: (1/4)*(1 + 2*x - 8*x^2 - (1 + 2*x)*sqrt(1-4*x)). (End)