A052721 Expansion of e.g.f. x*(1-2*x)*(1 - 2*x - sqrt(1-4*x))/2 - x^3.
0, 0, 0, 0, 0, 120, 2880, 70560, 1935360, 59875200, 2075673600, 79913433600, 3387499315200, 156883562035200, 7884404656128000, 427447366714368000, 24869664972472320000, 1545805113445232640000, 102232975285590589440000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 677
Crossrefs
Programs
-
Maple
spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
Table[If[n<5, 0, 2*n*(n-2)!*(n-4)*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
SageMath
def A052721(n): if (n<5): return 0 else: return 2*n*factorial(n-2)*(n-4)*catalan_number(n-3) [A052721(n) for n in (0..30)] # G. C. Greubel, May 28 2022
Formula
D-finite with recurrence: a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=120, a(6)=2880, (n+2)*a(n+2) = (6*n^2 + 8*n - 8)*a(n+1) + (40 + 44*n = 4*n^2 - 8*n^3)*a(n).
a(n) = 2*Pi^(-1/2)*4^(n-3)*Gamma(n-5/2)*n*(n-4) for n>3. - Mark van Hoeij, Oct 30 2011
a(n) = n!*A002057(n-5). - R. J. Mathar, Oct 18 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 4!*x*(d/dx)( x^5 * Hypergeometric2F0([2, 5/2], [], 4*x) ).
E.g.f.: (x/2)*(1 - 4*x + 2*x^2 - (1-2*x)*sqrt(1-4*x)). (End)