cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052721 Expansion of e.g.f. x*(1-2*x)*(1 - 2*x - sqrt(1-4*x))/2 - x^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 2880, 70560, 1935360, 59875200, 2075673600, 79913433600, 3387499315200, 156883562035200, 7884404656128000, 427447366714368000, 24869664972472320000, 1545805113445232640000, 102232975285590589440000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[If[n<5, 0, 2*n*(n-2)!*(n-4)*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
  • SageMath
    def A052721(n):
        if (n<5): return 0
        else: return 2*n*factorial(n-2)*(n-4)*catalan_number(n-3)
    [A052721(n) for n in (0..30)] # G. C. Greubel, May 28 2022

Formula

D-finite with recurrence: a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=120, a(6)=2880, (n+2)*a(n+2) = (6*n^2 + 8*n - 8)*a(n+1) + (40 + 44*n = 4*n^2 - 8*n^3)*a(n).
a(n) = 2*Pi^(-1/2)*4^(n-3)*Gamma(n-5/2)*n*(n-4) for n>3. - Mark van Hoeij, Oct 30 2011
a(n) = n!*A002057(n-5). - R. J. Mathar, Oct 18 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 4!*x*(d/dx)( x^5 * Hypergeometric2F0([2, 5/2], [], 4*x) ).
E.g.f.: (x/2)*(1 - 4*x + 2*x^2 - (1-2*x)*sqrt(1-4*x)). (End)