A052757 Number of rooted identity trees with n nodes and 3-colored non-root nodes.
0, 1, 3, 12, 64, 363, 2214, 14043, 91857, 614676, 4189254, 28974915, 202870938, 1435094800, 10241197917, 73639001172, 533004547453, 3880381334415, 28395656513145, 208748382089131, 1540935621796941, 11417266889312313, 84880193073070819, 632976019285857201
Offset: 0
Examples
a(3) = 12: o o o o o o o o o o o o | | | | | | | | | / \ / \ / \ 1 1 1 2 2 2 3 3 3 1 2 1 3 2 3 | | | | | | | | | 1 2 3 1 2 3 1 2 3 - _Alois P. Heinz_, Feb 24 2015
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 713
Programs
-
Maple
spec := [S,{S=Prod(B,B,B,Z),B=PowerSet(S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
Formula
a(n) ~ c * d^n / n^(3/2), where d = 7.969494030514425004826375511986491746399264355846412073489715938424..., c = 0.12982932099206082951153936270704832022771078... . - Vaclav Kotesovec, Feb 24 2015
From Ilya Gutkovskiy, Apr 13 2019: (Start)
G.f. A(x) satisfies: A(x) = x*exp(3*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * Product_{n>=1} (1 + x^n)^(3*a(n)). (End)
Extensions
New name from Vaclav Kotesovec, Feb 24 2015
Comments