cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052777 E.g.f.: x^2*(exp(x)-1)^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 1080, 6300, 30240, 130032, 521640, 1996500, 7389360, 26676936, 94486392, 329647500, 1136116800, 3876164832, 13112135496, 44031456900, 146920942800, 487489214520, 1609441068312, 5289755245500, 17315399138400, 56470807803600, 183546483143400
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Set(Z,1 <= card),S=Prod(Z,Z,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # end of program
    seq(6*(n^2-n)*combinat[stirling2](n-2,3), n=0..20);  # Mark van Hoeij, May 29 2013
  • Mathematica
    CoefficientList[Series[x^2*(E^x-1)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
  • PARI
    x='x+O('x^66); concat([0,0,0,0,0], Vec( serlaplace( x^2*exp(x)^3-3*x^2*exp(x)^2+3*exp(x)*x^2-x^2))) \\ Joerg Arndt, May 29 2013
    
  • PARI
    a(n)={if(n>=2, 3!*n*(n-1)*stirling(n-2,3,2), 0)} \\ Andrew Howroyd, Aug 08 2020

Formula

E.g.f.: x^2*exp(x)^3-3*x^2*exp(x)^2+3*exp(x)*x^2-x^2.
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, (-36*n^2-66*n-6*n^3-36)*a(n)+(11*n+11*n^3+44*n^2-66)*a(n+1)+(-12*n^2+18*n-6*n^3)*a(n+2)+(n^3-n)*a(n+3), a(5)=120}.
For n>2, a(n) = n*(n-1)*(3^(n-2) - 3*2^(n-2) + 3). - Vaclav Kotesovec, Oct 01 2013
a(n) = n*A052761(n-1) = 3!*n*(n-1)*Stirling2(n-2,3) for n >= 2. - Andrew Howroyd, Aug 08 2020

Extensions

New name using e.g.f., Vaclav Kotesovec, Oct 01 2013

A052792 Expansion of e.g.f.: x^2*(exp(x)-1)^4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 10080, 87360, 604800, 3674160, 20512800, 108044640, 545688000, 2671036368, 12763951200, 59856451200, 276499641600, 1261691128944, 5699120476320, 25525119703200, 113497442856000, 501533701110288, 2204246146687200, 9641611208433600
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Original name: a simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Set(Z,1 <= card),S=Prod(Z,Z,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • PARI
    a(n)={if(n>=2, 4!*n*(n-1)*stirling(n-2,4,2), 0)} \\ Andrew Howroyd, Aug 08 2020

Formula

E.g.f.: x^2*exp(x)^4-4*x^2*exp(x)^3+6*x^2*exp(x)^2-4*exp(x)*x^2+x^2.
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=0, a(6)=720, (1200*n+840*n^2+240*n^3+576+24*n^4)*a(n)+(1200-50*n^4+100*n-850*n^2-400*n^3)*a(n+1)+(210*n^3+175*n^2+35*n^4-420*n)*a(n+2)+(10*n^2-40*n^3+40*n-10*n^4)*a(n+3)+(-n^2+n^4-2*n+2*n^3)*a(n+4)}.
a(n) = n*A052776(n-1) = 4!*n*(n-1)*Stirling2(n-2,4) for n >= 2. - Andrew Howroyd, Aug 08 2020

Extensions

Name changed and terms a(21) and beyond from Andrew Howroyd, Aug 08 2020
Showing 1-2 of 2 results.