A052778 E.g.f.: x^4*log(-1/(-1+x)).
0, 0, 0, 0, 0, 120, 360, 1680, 10080, 72576, 604800, 5702400, 59875200, 691891200, 8717829120, 118879488000, 1743565824000, 27360571392000, 457312407552000, 8109673360588800, 152056375511040000, 3005349539512320000, 62444484876533760000, 1360632459941314560000
Offset: 0
Links
- Amiram Eldar, Table of n, a(n) for n = 0..450
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 735.
Programs
-
Maple
spec := [S,{B=Cycle(Z),S=Prod(Z,Z,Z,Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
a[n_] := If[n < 5, 0, n!/(n - 4)]; Array[a, 20, 0] (* Amiram Eldar, Oct 07 2020 *) With[{nn=30},CoefficientList[Series[x^4 Log[-1/(x-1)],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jun 28 2021 *)
Formula
E.g.f.: x^4*log(-1/(-1+x)).
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=120, (-n^2+3*n+4)*a(n) + (n-3)*a(n+1)}.
a(n) = n! / (n-4) (n > 4). - Olivier Gérard, Jun 13 2001
Sum_{n>=5} 1/a(n) = 49/6 - 3*e. - Amiram Eldar, Oct 07 2020
Sum_{n>=5} (-1)^(n+1)/a(n) = 5/e - 11/6. - Amiram Eldar, Aug 20 2022
Extensions
New name using e.g.f. from Vaclav Kotesovec, Oct 07 2020
Comments