cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052796 Expansion of e.g.f. x^4*exp(x)^2.

Original entry on oeis.org

0, 0, 0, 0, 24, 240, 1440, 6720, 26880, 96768, 322560, 1013760, 3041280, 8785920, 24600576, 67092480, 178913280, 467927040, 1203240960, 3048210432, 7620526080, 18827182080, 46022000640, 111421685760, 267412045824, 636695347200, 1504916275200
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of ways that n people can form two distinct committees and then choose a president and vice president for each committee.

Crossrefs

Cf. A090802.

Programs

  • Magma
    [(n-3)*(n-2)*(n-1)*n * 2^(n-4): n in [0..30]]; // Vincenzo Librandi, Dec 06 2012
  • Maple
    spec := [S,{B=Set(Z),S=Prod(Z,Z,Z,Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Range[0, 30]!* CoefficientList[Series[Exp[x]^2 * x^4,{x, 0, 30}], x] (* Vincenzo Librandi, Dec 06 2012 *)

Formula

E.g.f.: x^4*exp(x)^2.
a(n) = A090802(n, 4).
Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, (-2*n-2)*a(n)+(n-3)*a(n+1)}.
O.g.f.: -24*x^4/(2*x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
a(n) = (n-3)*(n-2)*(n-1)*n * 2^(n-4). - Vaclav Kotesovec, Nov 27 2012
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=4} 1/a(n) = 5/18 - log(2)/3.
Sum_{n>=4} (-1)^n/a(n) = 9*log(3/2) - 65/18. (End)

Extensions

More terms from Vincenzo Librandi, Dec 06 2012