A052809 A simple grammar: number of cycles of cycles.
0, 0, 2, 6, 28, 175, 1368, 12838, 140656, 1762794, 24878320, 390495336, 6748280064, 127324033824, 2604355096224, 57404425654080, 1356401049662208, 34202807058719568, 916723959720053760
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..419
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 771
Programs
-
Maple
spec := [S,{B=Cycle(C),C=Cycle(Z),S=Prod(B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[-Log[1+Log[1-x]]*x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
-
PARI
a(n) = n*sum(k=1, n-1, (k-1)!*abs(stirling(n-1, k, 1))); \\ Seiichi Manyama, May 20 2022
Formula
E.g.f.: log(-1/(-1+log(-1/(-1+x))))*x.
E.g.f.: -log(1+log(1-x))*x. - Vaclav Kotesovec, Oct 01 2013
a(n) ~ (n-1)! * (exp(1)/(exp(1)-1))^(n-1). - Vaclav Kotesovec, Oct 01 2013
a(n) = n * Sum_{k=1..n-1} (k-1)! * |Stirling1(n-1,k)| = n * A003713(n-1). - Seiichi Manyama, May 20 2022