A052812 A simple grammar: power set of pairs of sequences.
1, 0, 1, 2, 3, 6, 9, 16, 24, 42, 63, 102, 157, 244, 373, 570, 858, 1290, 1930, 2858, 4228, 6208, 9084, 13216, 19175, 27666, 39804, 57020, 81412, 115820, 164264, 232178, 327220, 459796, 644232, 900214, 1254554, 1743896, 2418071, 3344896, 4616026
Offset: 0
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 776
Programs
-
Maple
spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= PowerSet(C)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k-1),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 07 2015 *)
Formula
G.f.: exp(Sum((-1)^(j[1]+1)*(x^j[1])^2/(x^j[1]-1)^2/j[1], j[1]=1 .. infinity))
G.f.: Product_{k>=1} (1+x^k)^(k-1). - Vladeta Jovovic, Sep 17 2002
Weigh transform of b(n) = n-1. - Franklin T. Adams-Watters, Dec 28 2006
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(1296*Zeta(3)) - Pi^2 * n^(1/3) / (3^(4/3) * 2^(5/3) * Zeta(3)^(1/3)) + (3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/4) * 3^(1/3) * n^(2/3) * sqrt(Pi)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 07 2015
Extensions
More terms from Vladeta Jovovic, Sep 17 2002
Comments