cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052812 A simple grammar: power set of pairs of sequences.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 9, 16, 24, 42, 63, 102, 157, 244, 373, 570, 858, 1290, 1930, 2858, 4228, 6208, 9084, 13216, 19175, 27666, 39804, 57020, 81412, 115820, 164264, 232178, 327220, 459796, 644232, 900214, 1254554, 1743896, 2418071, 3344896, 4616026
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of partitions of n objects of two colors into distinct parts, where each part must contain at least one of each color. - Franklin T. Adams-Watters, Dec 28 2006

Crossrefs

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Prod(B,B),S= PowerSet(C)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^k)^(k-1),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 07 2015 *)

Formula

G.f.: exp(Sum((-1)^(j[1]+1)*(x^j[1])^2/(x^j[1]-1)^2/j[1], j[1]=1 .. infinity))
G.f.: Product_{k>=1} (1+x^k)^(k-1). - Vladeta Jovovic, Sep 17 2002
Weigh transform of b(n) = n-1. - Franklin T. Adams-Watters, Dec 28 2006
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(1296*Zeta(3)) - Pi^2 * n^(1/3) / (3^(4/3) * 2^(5/3) * Zeta(3)^(1/3)) + (3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(1/4) * 3^(1/3) * n^(2/3) * sqrt(Pi)), where Zeta(3) = A002117. - Vaclav Kotesovec, Mar 07 2015

Extensions

More terms from Vladeta Jovovic, Sep 17 2002