cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A099328 Number of Catalan knight paths from (0,0) to (n,0) in the region between and on the lines y=0 and y=3. (See A096587 for the definition of Catalan knight.).

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 8, 8, 21, 28, 69, 108, 226, 370, 736, 1280, 2473, 4392, 8281, 14920, 27874, 50706, 94088, 171880, 317693, 582116, 1073853, 1970836, 3630914, 6669730, 12279296, 22568896, 41533777, 76360464, 140493041, 258344528, 475256898
Offset: 1

Views

Author

Clark Kimberling, Oct 12 2004

Keywords

Examples

			a(6) counts 8 paths from (0,0) to (6,0); the final move in 5 of the paths is from the point (5,2) and the final move in the other 3 paths is from (4,1).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1,3,1,1,-1},{1,0,1,0,2,2,8},40] (* Harvey P. Dale, Aug 11 2017 *)

Formula

Taking A099328 to A099331 as the rows of an array T, the recurrences for these row sequences are given for n>=2 by T(n, 0) = T(n-1, 2) + T(n-2, 1), T(n, 1) = T(n-1, 3) + T(n-2, 0) + T(n-2, 2), T(n, 2) = T(n-1, 0) + T(n-2, 1) + T(n-2, 3), T(n, 3) = T(n-1, 1) + T(n-2, 2), with initial values T(0, 0)=1, T(1, 2)=1.
From Chai Wah Wu, Aug 09 2016: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) + 3*a(n-4) + a(n-5) + a(n-6) - a(n-7) for n > 7.
G.f.: x*(1 - x - 2*x^4)/((x^4 - 2*x^3 - 1)*(x^3 + x^2 + x - 1)). (End)
2*a(n) = A001590(n)-(-1)^n*( A052922(n-1)+A052922(n-3)) . - R. J. Mathar, Nov 22 2024
Showing 1-1 of 1 results.