A053027 Odd primes p with 2 zeros in Fibonacci numbers mod p.
3, 7, 23, 41, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 241, 263, 281, 283, 307, 347, 367, 383, 401, 409, 443, 449, 463, 467, 487, 503, 523, 547, 563, 569, 587, 601, 607, 641, 643, 647, 683, 727, 743, 769, 787, 823, 827, 863, 881, 883, 887, 907, 929
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- C. Ballot and M. Elia, Rank and period of primes in the Fibonacci sequence; a trichotomy, Fib. Quart., 45 (No. 1, 2007), 56-63 (The sequence B3).
- Nicholas Bragman and Eric Rowland, Limiting density of the Fibonacci sequence modulo powers of p, arXiv:2202.00704 [math.NT], 2022.
- M. Renault, Fibonacci sequence modulo m
- Jianing Song, Lucas sequences and entry point modulo p
Crossrefs
Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+-----------+---------+---------
* and also A053032 (primes dividing Lucas numbers of odd index) U {2}
** also primes dividing no Lucas number
Comments