A053028 Odd primes p with 4 zeros in any period of the Fibonacci numbers mod p.
5, 13, 17, 37, 53, 61, 73, 89, 97, 109, 113, 137, 149, 157, 173, 193, 197, 233, 257, 269, 277, 293, 313, 317, 337, 353, 373, 389, 397, 421, 433, 457, 557, 577, 593, 613, 617, 653, 661, 673, 677, 701, 733, 757, 761, 773, 797, 821, 829, 853, 857, 877, 937, 953
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- C. Ballot and M. Elia, Rank and period of primes in the Fibonacci sequence; a trichotomy, Fib. Quart., 45 (No. 1, 2007), 56-63 (The sequence B2).
- Nicholas Bragman and Eric Rowland, Limiting density of the Fibonacci sequence modulo powers of p, arXiv:2202.00704 [math.NT], 2022.
- J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 118. No. 2, (1985), 449-461.
- J. C. Lagarias, Errata to: The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 162, No. 2, (1994), 393-396.
- Diego Marques and Pavel Trojovsky, The order of appearance of the product of five consecutive Lucas numbers, Tatra Mountains Math. Publ. 59 (2014), 65-77.
- Pieter Moree, Counting Divisors of Lucas Numbers, Pacific J. Math, Vol. 186, No. 2, 1998, pp. 267-284.
- M. Renault, Fibonacci sequence modulo m
- H. Sedaghat, Zero-Avoiding Solutions of the Fibonacci Recurrence Modulo A Prime, Fibonacci Quart. 52 (2014), no. 1, 39-45. See p. 45.
- Jianing Song, Lucas sequences and entry point modulo p
- Eric Weisstein's World of Mathematics, Lucas Number
Crossrefs
Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
* and also A053032 U {2}
Programs
-
Mathematica
Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; badP={}; Do[p=Prime[n]; k=1; While[k
0, k++ ]; If[k==p, AppendTo[badP, p]], {n, 200}]; badP
Formula
Extensions
Edited: Name clarified. Moree and Renault link updated. Ballot and Elia reference linked. - Wolfdieter Lang, Jan 20 2015
Comments