A053029 Numbers with 4 zeros in Fibonacci numbers mod m.
5, 10, 13, 17, 25, 26, 34, 37, 50, 53, 61, 65, 73, 74, 85, 89, 97, 106, 109, 113, 122, 125, 130, 137, 146, 149, 157, 169, 170, 173, 178, 185, 193, 194, 197, 218, 221, 226, 233, 250, 257, 265, 269, 274, 277, 289, 293, 298, 305, 313, 314, 317, 325, 337, 338, 346
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Brennan Benfield and Michelle Manes, The Fibonacci Sequence is Normal Base 10, arXiv:2202.08986 [math.NT], 2022.
- Brennan Benfield and Oliver Lippard, Connecting Zeros in Pisano Periods to Prime Factors of K-Fibonacci Numbers, arXiv:2407.20048 [math.NT], 2024.
- M. Renault, Fibonacci sequence modulo m
Crossrefs
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
* and also A053032 U {2}
Programs
-
Haskell
a053029 n = a053029_list !! (n-1) a053029_list = filter ((== 4) . a001176) [1..] -- Reinhard Zumkeller, Jan 17 2014
Comments