cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A228443 G.f.: Sum_{k>=0} (2*k + 1) * x^k / (1 + x^(2*k + 1)).

Original entry on oeis.org

1, 2, 6, 6, 7, 10, 14, 12, 18, 18, 12, 22, 31, 20, 30, 30, 20, 36, 38, 28, 42, 42, 42, 46, 43, 36, 54, 60, 36, 58, 62, 42, 84, 66, 44, 70, 74, 62, 60, 78, 61, 82, 108, 60, 90, 84, 60, 108, 98, 70, 102, 102, 72, 106, 110, 76, 114, 132, 98, 108, 111, 84, 156
Offset: 0

Views

Author

Michael Somos, Nov 03 2013

Keywords

Examples

			G.f. = 1 + 2*x + 6*x^2 + 6*x^3 + 7*x^4 + 10*x^5 + 14*x^6 + 12*x^7 + 18*x^8 + ...
G.f. = q + 2*q^3 + 6*q^5 + 6*q^7 + 7*q^9 + 10*q^11 + 14*q^13 + 12*q^15 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, (-1)^n Sum[ (-1)^Quotient[k, 2] k, {k, Divisors@m}]]];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=0, n, (2*k + 1) * x^k / (1 + x^(2*k + 1)), x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor( n); prod( k=1, matsize(A)[1], if(p = A[k,1], e = A[k,2]; if( p==2, 0, if( p%4==1, (p^(e+1) - 1) / (p - 1), (p^(e+1) + (-1)^e) / (p + 1))))))};

Formula

a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1 (mod 4), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 3 (mod 4), with a(0) = 1.
G.f.: Sum_{k>=0} (-1)^k * x^k * (1 + x^(2*k + 1)) / (1 - x^(2*k + 1))^2
a(2*n - 1) = 2 * A053091(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 0.915965... is Catalan's constant (A006752). - Amiram Eldar, Dec 30 2023
Showing 1-1 of 1 results.